Optimal control of growth coefficient on a steady-state population model

被引:42
|
作者
Ding, W. [2 ]
Finotti, H. [1 ]
Lenhart, S. [1 ]
Lou, Y. [3 ]
Ye, Q. [4 ]
机构
[1] Univ Tennessee, Dept Math, 121 Ayres Hall, Knoxville, TN 37996 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[4] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Optimal control; Elliptic PDE; Population size; Growth coefficient; SPATIAL HETEROGENEITY; PRINCIPAL EIGENVALUE; INDEFINITE WEIGHT; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.nonrwa.2009.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the control problem of maximizing the net benefit in the conservation of a single species with a fixed amount of resources. The existence of an optimal control is established and the uniqueness and characterization of the optimal control are investigated. Numerical simulations illustrate several cases, for both 1D and 2D domains, in which several interesting phenomena are found. Some open problems are discussed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:688 / 704
页数:17
相关论文
共 50 条
  • [32] Optimal control problem for steady-state equations of acoustic wave diffraction
    L. V. Illarionova
    Computational Mathematics and Mathematical Physics, 2008, 48 : 284 - 294
  • [33] OPTIMAL DESIGN OF FEEDBACK-CONTROL BY INHIBITION - STEADY-STATE CONSIDERATIONS
    SAVAGEAU, MA
    JOURNAL OF MOLECULAR EVOLUTION, 1974, 4 (02) : 139 - 156
  • [34] Optimal Control of Steady-state Probability Distributions of Probabilistic Boolean Networks
    Yang Meng
    Li Rui
    Chu Tianguang
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2269 - 2274
  • [35] Optimal design of dispersive tubular reactors at steady-state using optimal control theory
    Logist, F.
    Van Erdeghem, P. M. M.
    Smets, I. Y.
    Van Impe, J. F.
    JOURNAL OF PROCESS CONTROL, 2009, 19 (07) : 1191 - 1198
  • [36] Steady-State Issues with Finite Control Set Model Predictive Control
    Lezana, Pablo
    Aguilera, Ricardo
    Quevedo, Daniel
    IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 1663 - +
  • [37] OPTIMAL CONTROL OF RESOURCE COEFFICIENT IN A PARABOLIC POPULATION MODEL
    Bintz, J.
    Finotti, H.
    Lenhart, S.
    BIOMAT 2013: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2014, : 121 - 135
  • [38] MINIMIZING COST TO MAINTAIN A STEADY-STATE GROWTH-RATE IN A POPULATION
    PARKER, R
    OPERATIONS RESEARCH, 1977, 25 (02) : 326 - 329
  • [39] THE EXISTENCE OF A NEOCLASSICAL STEADY-STATE WHEN POPULATION-GROWTH IS NEGATIVE
    FELDERER, B
    JOURNAL OF ECONOMICS-ZEITSCHRIFT FUR NATIONALOKONOMIE, 1988, 48 (04): : 413 - 418
  • [40] MODEL FOR STEADY-STATE ECONOMY
    DALY, HE
    FORENSIC QUARTERLY, 1975, 49 (03): : 305 - 319