Optimal control of growth coefficient on a steady-state population model

被引:42
|
作者
Ding, W. [2 ]
Finotti, H. [1 ]
Lenhart, S. [1 ]
Lou, Y. [3 ]
Ye, Q. [4 ]
机构
[1] Univ Tennessee, Dept Math, 121 Ayres Hall, Knoxville, TN 37996 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[4] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Optimal control; Elliptic PDE; Population size; Growth coefficient; SPATIAL HETEROGENEITY; PRINCIPAL EIGENVALUE; INDEFINITE WEIGHT; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.nonrwa.2009.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the control problem of maximizing the net benefit in the conservation of a single species with a fixed amount of resources. The existence of an optimal control is established and the uniqueness and characterization of the optimal control are investigated. Numerical simulations illustrate several cases, for both 1D and 2D domains, in which several interesting phenomena are found. Some open problems are discussed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:688 / 704
页数:17
相关论文
共 50 条
  • [21] A STEADY-STATE MODEL FOR APICAL WALL GROWTH IN FUNGI
    WESSELS, JGH
    ACTA BOTANICA NEERLANDICA, 1988, 37 (01): : 3 - 16
  • [22] Optimal Steady-State Regulation by State Feedback
    Hafez, Mohamed A.
    Uzeda, Erick Mejia
    Broucke, Mireille E.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6042 - 6057
  • [23] STEADY-STATE DENDRITIC GROWTH
    NASH, GE
    GLICKSMA.ME
    REPORT OF NRL PROGRESS, 1972, (MAY): : 1 - &
  • [24] MODEL-REFERENCE OPTIMAL STEADY-STATE ADAPTIVE COMPUTER CONTROL OF PLASTICS EXTRUSION PROCESSES
    HASSAN, GA
    PARNABY, J
    POLYMER ENGINEERING AND SCIENCE, 1981, 21 (05): : 276 - 284
  • [25] OPTIMAL STEADY-STATE OPERATION IN DISTILLATION
    WALLER, KV
    GUSTAFSSON, TK
    INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1978, 17 (03): : 313 - 317
  • [26] Optimal design of a fin in steady-state
    Belinskiy, Boris P.
    Hiestand, James W.
    Weerasena, Lakmali
    APPLIED MATHEMATICAL MODELLING, 2020, 77 : 1188 - 1200
  • [27] Optimal harvesting-coefficient control of steady-state prey-predator diffusive volterra-lotka systems
    Univ of Cincinnati, Cincinnati, United States
    Appl Math Optim, 2 (219-241):
  • [28] Optimal Steady-State Voltage Control Using Gaussian Process Learning
    Pareek, Parikshit
    Yu, Weng
    Nguyen, Hung Dinh
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (10) : 7017 - 7027
  • [29] Optimal Control Problem for Steady-State Equations of Acoustic Wave Diffraction
    Illarionova, L. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (02) : 284 - 294
  • [30] Optimal Steady-State Control for Linear Time-Invariant Systems
    Lawrence, Liam S. P.
    Nelson, Zachary E.
    Mallada, Enrique
    Simpson-Porco, John W.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3251 - 3257