Optimal control of growth coefficient on a steady-state population model

被引:42
|
作者
Ding, W. [2 ]
Finotti, H. [1 ]
Lenhart, S. [1 ]
Lou, Y. [3 ]
Ye, Q. [4 ]
机构
[1] Univ Tennessee, Dept Math, 121 Ayres Hall, Knoxville, TN 37996 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[4] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Optimal control; Elliptic PDE; Population size; Growth coefficient; SPATIAL HETEROGENEITY; PRINCIPAL EIGENVALUE; INDEFINITE WEIGHT; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.nonrwa.2009.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the control problem of maximizing the net benefit in the conservation of a single species with a fixed amount of resources. The existence of an optimal control is established and the uniqueness and characterization of the optimal control are investigated. Numerical simulations illustrate several cases, for both 1D and 2D domains, in which several interesting phenomena are found. Some open problems are discussed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:688 / 704
页数:17
相关论文
共 50 条
  • [1] TURNING PROCESS MODEL FOR STEADY-STATE OPTIMAL-CONTROL
    SULIMAN, SMA
    HASSAN, GA
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 1992, 30 (02) : 383 - 394
  • [2] ASPECTS OF ADAPTIVE OPTIMAL STEADY-STATE CONTROL
    PEARSON, AE
    JOURNAL OF BASIC ENGINEERING, 1968, 90 (02): : 201 - &
  • [3] STEADY-STATE OPTIMAL CONTROL OF FINITE-STATE MACHINES
    DORATO, P
    AUTOMATICA, 1971, 7 (03) : 351 - +
  • [4] Optimal bounded control of steady-state random vibrations
    Dimentberg, MF
    Iourtchenko, DV
    Bratus, AS
    PROBABILISTIC ENGINEERING MECHANICS, 2000, 15 (04) : 381 - 386
  • [5] Optimal Steady-State Control for Isolated Traffic Intersections
    Haddad, Jack
    De Schutter, Bart
    Mahalel, David
    Ioslovich, Ilya
    Gutman, Per-Olof
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) : 2612 - 2617
  • [6] Linear-Convex Optimal Steady-State Control
    Lawrence, Liam S. P.
    Simpson-Porco, John W.
    Mallada, Enrique
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (11) : 5377 - 5384
  • [7] Complementarity systems in constrained steady-state optimal control
    Jokic, A.
    Lazar, M.
    van den Bosch, P. P. J.
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2008, 4981 : 273 - 286
  • [8] SIMPLE MODEL OF STEADY-STATE UNBALANCED GROWTH
    BREMS, H
    WESTERN ECONOMIC JOURNAL, 1970, 8 (03): : 281 - 281
  • [9] STEADY-STATE PATHS IN AN ECONOMY WITH ENDOGENOUS POPULATION GROWTH
    BRITTO, R
    WESTERN ECONOMIC JOURNAL, 1970, 8 (04): : 390 - 396
  • [10] Steady-state thermodynamics for population growth in fluctuating environments
    Sughiyama, Yuki
    Kobayashi, Tetsuya J.
    PHYSICAL REVIEW E, 2017, 95 (01)