Bayesian models of object perception

被引:179
|
作者
Kersten, D
Yuille, A
机构
[1] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
关键词
D O I
10.1016/S0959-4388(03)00042-4
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human visual system is the most complex pattern recognition device known. In ways that are yet to be fully understood, the visual cortex arrives at a simple and unambiguous interpretation of data from the retinal image that is useful for the decisions and actions of everyday life. Recent advances in Bayesian models of computer vision and in the measurement and modeling of natural image statistics are providing the tools to test and constrain theories of human object perception. In turn, these theories are having an impact on the interpretation of cortical function.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [31] A Bayesian approach to object detection using probabilistic appearance-based models
    Dahyot, R
    Charbonnier, P
    Heitz, F
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2004, 7 (03) : 317 - 332
  • [32] Understanding Bayesian rooms using composite 3D object models
    Del Pero, Luca
    Bowdish, Joshua
    Kermgard, Bonnie
    Hartley, Emily
    Barnard, Kobus
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 153 - 160
  • [33] Bayesian object identification
    Rue, H
    Hurn, MA
    [J]. BIOMETRIKA, 1999, 86 (03) : 649 - 660
  • [34] Bayesian object matching
    Arto Klami
    [J]. Machine Learning, 2013, 92 : 225 - 250
  • [35] Bayesian object matching
    Klami, Arto
    [J]. MACHINE LEARNING, 2013, 92 (2-3) : 225 - 250
  • [36] Bayesian object segmentation
    Reno, AL
    [J]. INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, PROCEEDINGS, 1999, : 35 - 41
  • [37] Bayesian object matching
    Li, SZ
    [J]. JOURNAL OF APPLIED STATISTICS, 1998, 25 (03) : 425 - 443
  • [38] Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models
    Wang, Xiaogang
    Ma, Xiaoxu
    Grimson, W. Eric L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (03) : 539 - 555
  • [39] Inferred representations behave like oscillators in dynamic Bayesian models of beat perception
    Cannon, Jonathan
    Kaplan, Thomas
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2024, 122
  • [40] PRINCIPLES OF OBJECT PERCEPTION
    SPELKE, ES
    [J]. COGNITIVE SCIENCE, 1990, 14 (01) : 29 - 56