Bayesian models of object perception

被引:179
|
作者
Kersten, D
Yuille, A
机构
[1] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
关键词
D O I
10.1016/S0959-4388(03)00042-4
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human visual system is the most complex pattern recognition device known. In ways that are yet to be fully understood, the visual cortex arrives at a simple and unambiguous interpretation of data from the retinal image that is useful for the decisions and actions of everyday life. Recent advances in Bayesian models of computer vision and in the measurement and modeling of natural image statistics are providing the tools to test and constrain theories of human object perception. In turn, these theories are having an impact on the interpretation of cortical function.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [21] Building object models through interactive perception and foveated vision
    Bevec, Robert
    Ude, Ales
    [J]. ADVANCED ROBOTICS, 2015, 29 (09) : 611 - 623
  • [22] BAYESIAN STRUCTURAL EQUATION MODELS: ANALYSIS OF TWO ALTERNATIVE MODELS ABOUT SAFETY PERCEPTION
    Guardia Olmos, Joan
    Valera Pertegas, Sergi
    Carro Lemos, Daniel
    De la Fuente Solana, Emilia Inmaculada
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2009, 11 (02) : 157 - 172
  • [23] BAYESIAN PERCEPTION
    BURNS, CW
    FARELL, B
    SOLOMON, JA
    PELLI, DG
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1993, 34 (04) : 1417 - 1417
  • [24] Object perception and object categorisation
    Archambault, A.
    Schyns, P. G.
    [J]. PERCEPTION, 1998, 27 : 118 - 118
  • [25] The Bayesian brain: world models and conscious dimensions of auditory phantom perception
    Schilling, Achim
    Krauss, Patrick
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2024, 132 (02) : 317 - 318
  • [26] Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models
    Mendonca, Catarina
    Mandelli, Pietro
    Pulkki, Ville
    [J]. PLOS ONE, 2016, 11 (12):
  • [27] OBJECT PERCEPTION
    HUMPHREYS, GW
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1992, 27 (3-4) : 10 - 10
  • [28] Do computational models differ systematically from human object perception?
    Pramod, R. T.
    Arun, S. P.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1601 - 1609
  • [29] A Bayesian approach to object detection using probabilistic appearance-based models
    Rozenn Dahyot
    Pierre Charbonnier
    Fabrice Heitz
    [J]. Pattern Analysis and Applications, 2004, 7 (3) : 317 - 332
  • [30] A Bayesian approach to object detection using probabilistic appearance-based models
    Rozenn Dahyot
    Pierre Charbonnier
    Fabrice Heitz
    [J]. Pattern Analysis and Applications, 2004, 7 : 317 - 332