Interpretation of Lagrange multipliers in nonlinear pricing problem

被引:6
|
作者
Berg, Kimmo [1 ]
Ehtamo, Harri [1 ]
机构
[1] Helsinki Univ Technol, Syst Anal Lab, Helsinki 02015, Finland
关键词
Lagrange multipliers; Nonlinear pricing; Flow network; Conservation law; Stability; Sensitivity;
D O I
10.1007/s11590-009-0166-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present well-known interpretations of Lagrange multipliers in physical and economic applications, and introduce a new interpretation in nonlinear pricing problem. The multipliers can be interpreted as a network of directed flows between the buyer types. The structure of the digraph and the fact that the multipliers usually have distinctive values can be used in solving the optimization problem more efficiently. We also find that the multipliers satisfy a conservation law for each node in the digraph, and the non-uniqueness of the multipliers are connected to the stability of the solution structure.
引用
收藏
页码:275 / 285
页数:11
相关论文
共 50 条
  • [41] Lagrange multipliers in vector optimization
    Breckner, WW
    Gopfert, A
    Sekatzek, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S525 - S526
  • [42] NORMALITY AND UNIQUENESS OF LAGRANGE MULTIPLIERS
    Cortez, Karla L.
    Rosenblueth, Javier F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) : 3169 - 3188
  • [43] Quantum dynamics of Lagrange multipliers
    Alvarez, Enrique
    Anero, Jesus
    Martin, Carmelo P.
    Velasco-Aja, Eduardo
    PHYSICAL REVIEW D, 2023, 108 (02)
  • [44] LAGRANGE MULTIPLIERS IN INTRINSIC ELASTICITY
    Ciarlet, Philippe G.
    Ciarlet, Patrick, Jr.
    Iosifescu, Oana
    Sauter, Stefan
    Zou, Jun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (04): : 651 - 666
  • [45] Contact dynamics with Lagrange multipliers
    Brunssen, Stephan
    Hueeber, Stefan
    Wohlmuth, Barbara
    IUTAM SYMPOSIUM ON COMPUTATIONAL METHODS IN CONTACT MECHANICS, 2007, 3 : 17 - +
  • [46] Determination of eigenvectors with Lagrange multipliers
    Wooyong Han
    Dong-Won Jung
    Jungil Lee
    Chaehyun Yu
    Journal of the Korean Physical Society, 2021, 78 : 1018 - 1022
  • [47] LAGRANGE MULTIPLIERS AND GRAVITATIONAL THEORY
    SAFKO, JL
    ELSTON, F
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (08) : 1531 - 1537
  • [48] Kelvin Viscoelasticity and Lagrange Multipliers Applied to the Simulation of Nonlinear Structural Vibration Control
    Madeira, Raphael Henrique
    Coda, Humberto Breves
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2016, 13 (05): : 964 - 991
  • [49] Dark Universe with Lagrange multipliers
    Cid, Antonella
    Labrana, Pedro
    II COSMOSUR: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE, 2015, 1647 : 114 - 116
  • [50] A NOTE ON UNDETERMINED MULTIPLIERS OF LAGRANGE
    EGGIMANN, WH
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (02): : 214 - &