Determination of eigenvectors with Lagrange multipliers

被引:0
|
作者
Wooyong Han
Dong-Won Jung
Jungil Lee
Chaehyun Yu
机构
[1] Korea University,KPOPEℰ Collaboration, Department of Physics
来源
关键词
Eigenvalue problem; Eigenvector; Lagrange multiplier; Hermitian matrix; Diagonalization; Gauge fixing;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method to determine the eigenvectors of an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} Hermitian matrix by introducing Lagrange undetermined multipliers. In contrast to a usual Lagrange multiplier that is a number, we introduce matrix-valued multipliers with a constraint equation, which make the eigenvalue equation directly solvable. Then, there exists a unique solution for each eigenvalue equation and the eigenvectors are obtained by imposing the constraint limit. This method is in clear contrast to the conventional approach of Gaussian elimination and it will be a good pedagogical example for conceptual understanding for the gauge symmetry just with the knowledge of quantum physics and linear algebra at the undergraduate level.
引用
收藏
页码:1018 / 1022
页数:4
相关论文
共 50 条