Galerkin finite element method for generalized Forchheimer equation of slightly compressible fluids in porous media

被引:1
|
作者
Thinh Kieu [1 ]
机构
[1] Univ North Georgia, Dept Math, Gainesville Campus,3820 Mundy Mill Rd, Oakwood, GA 30566 USA
关键词
porous media; immersible flow; error analysis; Galerkin finite element; nonlinear degenerate parabolic equations; generalized Forchheimer equations; numerical analysis; BACKWARD EULER SCHEME; PARABOLIC EQUATION; FLOW;
D O I
10.1002/mma.4310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the generalized Forchheimer flows for slightly compressible fluids. Using Muskat's and Ward's general form of Forchheimer equations, we describe the fluid dynamics by a nonlinear degenerate parabolic equation for the density. We study Galerkin finite elements method for the initial boundary value problem. The existence and uniqueness of the approximation are proved. A prior estimates for the solutions in L-infinity(0, T;L-q(Omega)), q >= 2, time derivative in L-infinity(0, T;L-2(Omega)) and gradient in L-infinity(0, T;W-1,W-2-a(Omega)), with a is an element of (0, 1) are established. Error estimates for the density variable are derived in several norms for both continuous and discrete time procedures. Numerical experiments using backward Euler scheme confirm the theoretical analysis regarding convergence rates. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:4364 / 4384
页数:21
相关论文
共 50 条
  • [21] A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids
    Pesch, L.
    van der Vegt, J. J. W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) : 5426 - 5446
  • [22] Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation
    Wang, Haifeng
    Xu, Da
    Zhou, Jun
    Guo, Jing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 732 - 749
  • [23] CONVERGENCE OF THE FINITE ELEMENT METHOD FOR THE POROUS MEDIA EQUATION WITH VARIABLE EXPONENT
    Duque, Jose C. M.
    Almeida, Rui M. P.
    Antontsev, Stanislav N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3483 - 3504
  • [24] Numerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method
    Zhang, Qiang
    Wu, Zi-Long
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (02) : 127 - 148
  • [25] Numerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method
    Qiang Zhang
    Zi-Long Wu
    Journal of Scientific Computing, 2009, 38 : 127 - 148
  • [26] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81
  • [27] Mixed Finite Element Formulation of the Compressible Charged Porous Media
    Malakpoor, K.
    Huyghe, J. M.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [28] A weak Galerkin finite element method for Burgers' equation
    Chen, Yanli
    Zhang, Tie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 103 - 119
  • [29] Finite element Galerkin method for the 'good' boussinesq equation
    Pani, Amiya K.
    Saranga, Haritha
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 29 (08): : 937 - 956
  • [30] THE GALERKIN FINITE ELEMENT METHOD FOR ADVECTION DIFFUSION EQUATION
    Gorgulu, Melis Zorsahin
    Irk, Dursun
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (01): : 119 - 128