Cosmological constraints on generalized Chaplygin gas model: Markov Chain Monte Carlo approach

被引:29
|
作者
Xu, Lixin [1 ]
Lu, Jianbo [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
dark energy theory; dark energy experiments; supernova type Ia - standard candles; FIELD ELLIPTIC GALAXIES; DARK ENERGY CONSTRAINTS; DIGITAL SKY SURVEY; EQUATION-OF-STATE; ACCELERATING UNIVERSE; INTERMEDIATE REDSHIFT; ANALYTIC APPROACH; HUBBLE PARAMETER; SUPERNOVAE DATA; RED GALAXIES;
D O I
10.1088/1475-7516/2010/03/025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the Markov Chain Monte Carlo method to investigate a global constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Constitution dataset of type supernovae Ia (SNIa,), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a non-flat universe, the constraint results for GCG model are, Omega(b)h(2) = 0.0235(-0.0018)(+0.00221) (1 sigma) (+0.0028)(-0.0022) (2 sigma), Omega(k) = 0.0035(-0.0182)(+0.0172) (1 sigma) (+0.0226)(-0.0204) (2 sigma), A(s) = 0.753(-0.035)(+0.037) (1 sigma) (+0.045)(-0.044) (2 sigma), alpha = 0.043(-0.016)(+0.102) (1 sigma) (+0.0134)(-0.117) (2 sigma), and H-0 = 70.00(-2.92)(+3.25) (1 sigma) (+3.77)(-3.67) (2 sigma), which is more stringent than the previous results for constraint on GCG model parameters. Furthermore, according to the information criterion, it seems that the current observations much support ACDM model relative to the GCG model.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
    Jensen, Anders Chr.
    Ditlevsen, Susanne
    Kessler, Mathieu
    Papaspiliopoulos, Omiros
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [32] A MARGINALISED MARKOV CHAIN MONTE CARLO APPROACH FOR MODEL BASED ANALYSIS OF EEG DATA
    Hettiarachchi, Imali
    Mohamed, Shady
    Nahavandi, Saeid
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1539 - 1542
  • [33] A Markov chain Monte Carlo approach to closing the loop in SLAM
    Kaess, M
    Dellaert, F
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 643 - 648
  • [34] Letter: Generalized Chaplygin Gas with α = 0 and the ΛC D M Cosmological Model
    J. C. Fabris
    S. V. B. Gonçalves
    R. de Sá Ribeiro
    General Relativity and Gravitation, 2004, 36 : 211 - 216
  • [35] On the concordance of cosmological data in the case of the generalized Chaplygin gas
    Aurich, R.
    Lustig, S.
    ASTROPARTICLE PHYSICS, 2018, 97 : 118 - 129
  • [36] An evaluation of a Markov chain monte carlo method for the Rasch model
    Kim, SH
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2001, 25 (02) : 163 - 176
  • [37] Sequential Markov Chain Monte Carlo (MCMC) model discrimination
    Masoumi, Samira
    Duever, Thomas A.
    Reilly, Park M.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2013, 91 (05): : 862 - 869
  • [38] An Adaptive Markov Chain Monte Carlo Method for GARCH Model
    Takaishi, Tetsuya
    COMPLEX SCIENCES, PT 2, 2009, 5 : 1424 - 1434
  • [39] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [40] Markov Chain Monte Carlo model selection for DAG models
    Fronk E.-M.
    Giudici P.
    Statistical Methods and Applications, 2004, 13 (3) : 259 - 273