Ultrathin [110]-Confined Li4Ti5O12 Nanoflakes for High Rate Lithium Storage

被引:43
|
作者
Fu, Shuting [1 ,2 ]
Yu, Xuefang [3 ]
Wu, Qili [1 ,2 ]
Yang, Xianfeng [4 ]
Liu, Zheng [1 ,2 ,5 ,6 ]
Li, Xiaohui
He, Shiman [1 ,2 ]
Wang, Da [5 ,6 ]
Li, Yanchun [1 ,2 ,7 ]
Tong, Shengfu [1 ,2 ]
Wu, Mingmei [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Zhuhai, Peoples R China
[2] Sun Yat Sen Univ, Sch Marine Sci, Guangzhou 510275, Zhuhai, Peoples R China
[3] Yantai Univ, Sch Chem & Chem Engn, Lab Theoret & Computat Chem, Yantai 264005, Peoples R China
[4] South China Univ Technol, Analyt & Testing Ctr, Guangzhou 510640, Peoples R China
[5] Wuyi Univ, Sch Appl Phys & Mat, Jiangmen 529020, Peoples R China
[6] Jiangmen Adv Battery Mat Engn & Technol Res Ctr, Jiangmen 529020, Peoples R China
[7] Jilin Univ, Inst Theoret Chem, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
110]‐ confined; high‐ rate; lithium ion batteries; spinel lithium titanate; ultrathin nanoflakes; GRAPHENE OXIDE COMPOSITE; ANODE MATERIAL; ION BATTERIES; TITANATE; PERFORMANCE; TIO2; MICROSPHERES; POLYMER; SIZE;
D O I
10.1002/aenm.202003270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the high-rate performance of spinel lithium titanate (Li4Ti5O12, LTO) is one of the critical requirements to promote its practical application in Li-ion batteries (LIBs). Herein, the possible Li+ ion diffusion routes in LTO are theoretically analyzed and compared by computational investigation. The calculations show that the most feasible diffusion path for Li+ ions is along the [110] direction indicated by the lowest energy barrier. Inspired by this prediction, ultrathin [110]-confined LTO nanoflakes are rationally prepared through a function-led targeted synthesis. The [110] orientation of the material sufficiently provides preferable transport channels which can promote the anisotropic diffusion of lithium ions within LTO nanoflakes. Furthermore, the ultrathin 2D nanostructure effectively shortens the diffusion length along the [110] direction, facilitating ion transport across the nanoflakes and thus improving the diffusion kinetics. Owing to these unique features, the LIB composed of optimized [110]-confined LTO exhibits remarkable high rate capability and long-term cycling stability, with a capacity of 146 mAh g(-1) at an ultrahigh rate of 100 C and a capacity retention of 88% even after 1500 cycles at 50 C. The as-prepared [110]-confined LTO nanoflakes have promising applications and show commercial viability for high-power facilities.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage
    Xu, G. B.
    Yang, L. W.
    Wei, X. L.
    Ding, J. W.
    Zhong, J. X.
    Chu, P. K.
    JOURNAL OF POWER SOURCES, 2015, 295 : 305 - 313
  • [42] Electrochemical study of the lithium insertion mechanism into Li4Ti5O12
    Sarciaux, Sylvere
    La Salle, Annie Le Gal
    Guyomard, Dominique
    Piffard, Yves
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1998, 311 : 63 - 68
  • [43] Spinel Li4Ti5O12 Nanotubed for Energy Storage Materials
    Lee, Soon Chang
    Lee, Sang Man
    Lee, Jae Won
    Lee, Jin Bae
    Lee, Sang Moon
    Han, Sang Sup
    Lee, Hee Cheon
    Kim, Hae Jin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (42): : 18420 - 18423
  • [44] Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-Ion Batteries
    Jaiswal, A.
    Horne, C. R.
    Chang, O.
    Zhang, W.
    Kong, W.
    Wang, E.
    Chern, T.
    Doeff, M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (12) : A1041 - A1046
  • [45] Li4Ti5O12/Li3SbO4/C composite anode for high rate lithium-ion batteries
    Kundu, M.
    Mahanty, S.
    Basu, R. N.
    MATERIALS LETTERS, 2011, 65 (19-20) : 3083 - 3085
  • [46] High Tap Density Li4Ti5O12 Anode Materials Synthesized for High Rate Performance Lithium Ion Batteries
    Gao, Yuanrui
    Cheng, Chongling
    An, Juan
    Liu, Hongjiang
    Zhang, Dengsong
    Chen, Guorong
    Shi, Liyi
    CHEMISTRYSELECT, 2018, 3 (02): : 348 - 353
  • [47] Synthesis and electrochemical properties of Li4Ti5O12/Ce as an anode material for high rate lithium ion battery
    Cheng, Chongling
    Liu, Hongjiang
    Xue, Xin
    Cao, Hui
    Liu, Lili
    Shi, Liyi
    ADVANCED RESEARCH ON ENERGY, CHEMISTRY AND MATERIALS APPLICATION, 2014, 848 : 18 - +
  • [48] Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries
    Wang, Li
    Xiao, Qizhen
    Li, Zhaohui
    Lei, Gangtie
    Zhang, Ping
    Wu, Lijuan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (10) : 3307 - 3313
  • [49] Electrochemical lithium storage of Li4Ti5O12/NiO nanocomposites for high-performance lithium-ion battery anodes
    Zhang, Congcong
    Shao, Dan
    Gao, Qiongzhi
    Lu, Yuheng
    Liu, Zuotao
    Yu, Xiaoyuan
    Fang, Yueping
    Chen, Dongyang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1859 - 1866
  • [50] Electrochemical lithium storage of Li4Ti5O12/NiO nanocomposites for high-performance lithium-ion battery anodes
    Congcong Zhang
    Dan Shao
    Qiongzhi Gao
    Yuheng Lu
    Zuotao Liu
    Xiaoyuan Yu
    Yueping Fang
    Dongyang Chen
    Journal of Solid State Electrochemistry, 2015, 19 : 1859 - 1866