Ultrathin [110]-Confined Li4Ti5O12 Nanoflakes for High Rate Lithium Storage

被引:43
|
作者
Fu, Shuting [1 ,2 ]
Yu, Xuefang [3 ]
Wu, Qili [1 ,2 ]
Yang, Xianfeng [4 ]
Liu, Zheng [1 ,2 ,5 ,6 ]
Li, Xiaohui
He, Shiman [1 ,2 ]
Wang, Da [5 ,6 ]
Li, Yanchun [1 ,2 ,7 ]
Tong, Shengfu [1 ,2 ]
Wu, Mingmei [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Zhuhai, Peoples R China
[2] Sun Yat Sen Univ, Sch Marine Sci, Guangzhou 510275, Zhuhai, Peoples R China
[3] Yantai Univ, Sch Chem & Chem Engn, Lab Theoret & Computat Chem, Yantai 264005, Peoples R China
[4] South China Univ Technol, Analyt & Testing Ctr, Guangzhou 510640, Peoples R China
[5] Wuyi Univ, Sch Appl Phys & Mat, Jiangmen 529020, Peoples R China
[6] Jiangmen Adv Battery Mat Engn & Technol Res Ctr, Jiangmen 529020, Peoples R China
[7] Jilin Univ, Inst Theoret Chem, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
110]‐ confined; high‐ rate; lithium ion batteries; spinel lithium titanate; ultrathin nanoflakes; GRAPHENE OXIDE COMPOSITE; ANODE MATERIAL; ION BATTERIES; TITANATE; PERFORMANCE; TIO2; MICROSPHERES; POLYMER; SIZE;
D O I
10.1002/aenm.202003270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the high-rate performance of spinel lithium titanate (Li4Ti5O12, LTO) is one of the critical requirements to promote its practical application in Li-ion batteries (LIBs). Herein, the possible Li+ ion diffusion routes in LTO are theoretically analyzed and compared by computational investigation. The calculations show that the most feasible diffusion path for Li+ ions is along the [110] direction indicated by the lowest energy barrier. Inspired by this prediction, ultrathin [110]-confined LTO nanoflakes are rationally prepared through a function-led targeted synthesis. The [110] orientation of the material sufficiently provides preferable transport channels which can promote the anisotropic diffusion of lithium ions within LTO nanoflakes. Furthermore, the ultrathin 2D nanostructure effectively shortens the diffusion length along the [110] direction, facilitating ion transport across the nanoflakes and thus improving the diffusion kinetics. Owing to these unique features, the LIB composed of optimized [110]-confined LTO exhibits remarkable high rate capability and long-term cycling stability, with a capacity of 146 mAh g(-1) at an ultrahigh rate of 100 C and a capacity retention of 88% even after 1500 cycles at 50 C. The as-prepared [110]-confined LTO nanoflakes have promising applications and show commercial viability for high-power facilities.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries
    Wang, Jiaqing
    Yang, Zhenzhong
    Li, Weihan
    Zhong, Xiongwu
    Gu, Lin
    Yu, Yan
    JOURNAL OF POWER SOURCES, 2014, 266 : 323 - 331
  • [32] Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries
    Shen, Laifa
    Yuan, Changzhou
    Luo, Hongjun
    Zhang, Xiaogang
    Xu, Ke
    Xia, Yongyao
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (33) : 6998 - 7004
  • [33] High rate cycling performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries
    Liu, Hai-ping
    Wen, Guang-wu
    Bi, Si-fu
    Wang, Chun-yu
    Hao, Jing-min
    Gao, Peng
    ELECTROCHIMICA ACTA, 2016, 192 : 38 - 44
  • [34] Sb doped Li4Ti5O12 hollow spheres with enhanced lithium storage capability
    Li, Fuyun
    Zeng, Min
    Li, Jing
    Tong, Xiaoling
    Xu, Hui
    RSC ADVANCES, 2016, 6 (32): : 26902 - 26907
  • [35] High-rate Li4Ti5O12/C composites as anode for lithium-ion batteries
    Zheng, Xiao-Dong
    Dong, Chen-Chu
    Huang, Bing
    Lu, Mi
    IONICS, 2013, 19 (03) : 385 - 389
  • [36] Mesoporous Spinel Li4Ti5O12 Nanoparticles for High Rate Lithium-ion Battery Anodes
    Liu, Weijian
    Shao, Dan
    Luo, Guoen
    Gao, Qiongzhi
    Yan, Guangjie
    He, Jiarong
    Chen, Dongyang
    Yu, Xiaoyuan
    Fang, Yueping
    ELECTROCHIMICA ACTA, 2014, 133 : 578 - 582
  • [37] Single-crystalline Li4Ti5O12 nanorods and their application in high rate capability Li4Ti5O12/LiMn2O4 full cells
    Xi, Liu Jiang
    Wang, Hong Kang
    Yang, Shi Liu
    Ma, Ru Guang
    Lu, Zhou Guang
    Cao, Chen Wei
    Leung, Kwan Lan
    Deng, Jian Qiu
    Rogach, Andrey L.
    Chung, C. Y.
    JOURNAL OF POWER SOURCES, 2013, 242 : 222 - 229
  • [38] Electrochemical properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag nanomaterials
    I. A. Stenina
    A. N. Sobolev
    A. A. Kuz’mina
    T. L. Kulova
    A. M. Skundin
    N. Yu. Tabachkova
    A. B. Yaroslavtsev
    Inorganic Materials, 2017, 53 : 1039 - 1045
  • [39] Lithium Migration at High Temperatures in Li4Ti5O12 Studied by Neutron Diffraction
    Laumann, Andreas
    Boysen, Hans
    Bremholm, Martin
    Fehr, K. Thomas
    Hoelzel, Markus
    Holzapfel, Michael
    CHEMISTRY OF MATERIALS, 2011, 23 (11) : 2753 - 2759
  • [40] Electrochemical Properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag Nanomaterials
    Stenina, I. A.
    Sobolev, A. N.
    Kuz'mina, A. A.
    Kulova, T. L.
    Skundin, A. M.
    Tabachkova, N. Yu.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2017, 53 (10) : 1039 - 1045