PARALLELIZATION OF A FINITE VOLUMES DISCRETIZATION FOR ANISOTROPIC DIFFUSION PROBLEMS USING AN IMPROVED SCHUR COMPLEMENT TECHNIQUE

被引:0
|
作者
Belhadj, Hassan [1 ]
Khallouq, Samir [2 ]
Rhoudaf, Mohamed [3 ]
机构
[1] Abdelmalek Essaadi Univ, Fac Sci & Tech Tangier, Lab Math & Applicat, Dept Math, BP 416, Tangier 90000, Morocco
[2] Moulay Ismail Univ Meknes, Fac Sci & Tech Errachidia, Dept Math, BP 509, Boutalamine Errachidia 57000, Morocco
[3] Moulay Ismail Univ Meknes, Fac Sci Meknes, Dept Math & Informat, BP 11201, Zitoune Meknes, Morocco
来源
关键词
Anisotropic diffusion problems; discrete duality finite volume (DDFV); convergence; domain decomposition methods; Schur complement method; parallel computing; CONVERGENCE; SCHEMES;
D O I
10.3934/dcdss.2020260
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present in this paper a new algorithm combining a finite volume method with an improved Schur complement technique to solve 2D anisotropic diffusion problems on general meshes. After having proved the convergence of the finite volume method, we have given a description of the proposed algorithm in the case of two nonoverlapping subdomains. Several numerical tests are achieved which illustrate the theoretical results of convergence of the finite volume method and show the advantages of the proposed algorithm.
引用
收藏
页码:2075 / 2099
页数:25
相关论文
共 50 条
  • [41] Improved resolution of D-bar images of ventilation using a Schur complement property and an anatomical atlas
    Santos, Talles Batista Rattis
    Nakanishi, Rafael Mikio
    Leon Bueno de Camargo, Erick Dario
    Passos Amato, Marcelo Brito
    Kaipio, Jari P.
    Lima, Raul Gonzalez
    Mueller, Jennifer L.
    MEDICAL PHYSICS, 2022, 49 (07) : 4653 - 4670
  • [42] A semi-discrete tailored finite point method for a class of anisotropic diffusion problems
    Han, Houde
    Huang, Zhongyi
    Ying, Wenjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (11) : 1760 - 1774
  • [43] Maximum Principle for the Finite Element Solution of Time-Dependent Anisotropic Diffusion Problems
    Li, Xianping
    Huang, Weizhang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (06) : 1963 - 1985
  • [44] Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems
    Changna Lu
    Weizhang Huang
    Jianxian Qiu
    Numerische Mathematik, 2014, 127 : 515 - 537
  • [45] A new finite volume scheme for anisotropic diffusion problems on general grids:: convergence analysis
    Eymard, Robert
    Gallouet, Thierry
    Herbin, Raphaele
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (06) : 403 - 406
  • [46] A family of quadratic finite volume element schemes for anisotropic diffusion problems on triangular meshes
    Zhou, Yanhui
    Wu, Jiming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 402
  • [47] Monotonicity correction for second order element finite volume methods of anisotropic diffusion problems
    Yang, Hongtao
    Yu, Boyang
    Li, Yonghai
    Yuan, Guangwei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [48] A MONOTONE NONLINEAR CELL-CENTERED FINITE ELEMENT METHOD FOR ANISOTROPIC DIFFUSION PROBLEMS
    Nguyen Anh Dao
    Duc Cam Hai Vo
    Thanh Hai Ong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [49] Monotone Finite Difference Schemes for Anisotropic Diffusion Problems via Nonnegative Directional Splittings
    Cuong Ngo
    Huang, Weizhang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (02) : 473 - 495
  • [50] A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems
    Kuzmin, D.
    Shashkov, M. J.
    Svyatskiy, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (09) : 3448 - 3463