PARALLELIZATION OF A FINITE VOLUMES DISCRETIZATION FOR ANISOTROPIC DIFFUSION PROBLEMS USING AN IMPROVED SCHUR COMPLEMENT TECHNIQUE

被引:0
|
作者
Belhadj, Hassan [1 ]
Khallouq, Samir [2 ]
Rhoudaf, Mohamed [3 ]
机构
[1] Abdelmalek Essaadi Univ, Fac Sci & Tech Tangier, Lab Math & Applicat, Dept Math, BP 416, Tangier 90000, Morocco
[2] Moulay Ismail Univ Meknes, Fac Sci & Tech Errachidia, Dept Math, BP 509, Boutalamine Errachidia 57000, Morocco
[3] Moulay Ismail Univ Meknes, Fac Sci Meknes, Dept Math & Informat, BP 11201, Zitoune Meknes, Morocco
来源
关键词
Anisotropic diffusion problems; discrete duality finite volume (DDFV); convergence; domain decomposition methods; Schur complement method; parallel computing; CONVERGENCE; SCHEMES;
D O I
10.3934/dcdss.2020260
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present in this paper a new algorithm combining a finite volume method with an improved Schur complement technique to solve 2D anisotropic diffusion problems on general meshes. After having proved the convergence of the finite volume method, we have given a description of the proposed algorithm in the case of two nonoverlapping subdomains. Several numerical tests are achieved which illustrate the theoretical results of convergence of the finite volume method and show the advantages of the proposed algorithm.
引用
收藏
页码:2075 / 2099
页数:25
相关论文
共 50 条
  • [31] An interpolation-free cell-centered discretization of the heterogeneous and anisotropic diffusion problems on polygonal meshes
    Miao, Shuai
    Wu, Jiming
    Yao, Yanzhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 130 : 105 - 118
  • [32] Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults
    Isabelle Faille
    Alessio Fumagalli
    Jérôme Jaffré
    Jean E. Roberts
    Computational Geosciences, 2016, 20 : 317 - 339
  • [33] Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults
    Faille, Isabelle
    Fumagalli, Alessio
    Jaffre, Jerome
    Roberts, Jean E.
    COMPUTATIONAL GEOSCIENCES, 2016, 20 (02) : 317 - 339
  • [34] A fast solution technique for finite element discretization of the space-time fractional diffusion equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    Wang, Hong
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 146 - 163
  • [35] An Anisotropic Diffusion Finite Volume Algorithm Using a Small Stencil
    Ferrand, Martin
    Fontaine, Jacques
    Angelini, Ophelie
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - ELLIPTIC, PARABOLIC AND HYPERBOLIC PROBLEMS, FVCA 7, 2014, 78 : 577 - 585
  • [36] Discretization of Gradient Elasticity Problems Using C1 Finite Elements
    Papanicolopulos, Stefanos-Aldo
    Zervos, A.
    Vardoulakis, Ioannis
    MECHANICS OF GENERALIZED CONTINU A: ONE HUNDRED YEARS AFTER THE COSSERATS, 2010, 21 : 269 - +
  • [37] Using mean field annealing to solve anisotropic diffusion problems
    Qi, HR
    Snyder, WE
    Bilbro, GL
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL III, 1997, : 352 - 355
  • [38] A CELL-CENTERED MULTIGRID SOLVER FOR THE FINITE VOLUME DISCRETIZATION OF ANISOTROPIC ELLIPTIC INTERFACE PROBLEMS ON IRREGULAR DOMAINS*
    Pan, Kejia
    Wu, Xiaoxin
    Hu, Hongling
    Li, Zhilin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023,
  • [39] A CELL-CENTERED MULTIGRID SOLVER FOR THE FINITE VOLUME DISCRETIZATION OF ANISOTROPIC ELLIPTIC INTERFACE PROBLEMS ON IRREGULAR DOMAINS
    Pan, Kejia
    Wu, Xiaoxin
    Hu, Hongling
    Li, Zhilin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (01): : 18 - 42
  • [40] Solving Diffusion Problems Using Method of Finite Differences
    Titov, K., V
    INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE MODELING IN EDUCATION 2019, 2019, 2195