Implementation of Automatic Differentiation to Python']Python-based Semiconductor Device Simulator

被引:0
|
作者
Ikegami, Tsutomu [1 ]
Fukuda, Koichi [1 ]
Hattori, Junichi [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
关键词
TCAD; device simulation; automatic differentiation; !text type='Python']Python[!/text; negative capacitance; NEGATIVE-CAPACITANCE; SUPERLU; SOLVER; MPI;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Python-based device simulator named Impulse TCAD was developed. The simulator is built on top of a nonlinear finite volume method (FVM) solver. To describe physical behavior of non-standard materials, both device properties and their dominant equations can be customized. The given FVM equations are solved by the Newton method, where required derivatives of the equations are derived automatically by using an automatic differentiation technique. As a demonstration, a steady state analysis of the negative capacitance field effect transistors with ferroelectric materials is selected, where the coupled Poisson and Devonshire equations are implemented in several different ways.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 50 条
  • [21] A python']python-based multicriteria portfolio selection DSS
    Xidonas, Panos
    Doukas, Haris
    Sarmas, Elissaios
    [J]. RAIRO-OPERATIONS RESEARCH, 2021, 55 : S3009 - S3034
  • [22] Python']Python-Based Unstructured Data Retrieval System
    Zhang, Weihua
    Wang, Wei
    Zhu, Li
    Zheng, Ruiying
    Liu, Xing
    [J]. 2019 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2019, : 374 - 377
  • [23] Python']Python-Based TinyIPFIX in Wireless Sensor Networks
    Schiller, Eryk
    Huber, Ramon
    Stiller, Burkhard
    [J]. PROCEEDINGS OF THE IEEE 46TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2021), 2021, : 431 - 434
  • [24] Python']Python-Based Fuzzy Classifier for Cashew Kernels
    Tomar, Snehal Singh
    Narendra, V. G.
    [J]. SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2017, VOL 1, 2019, 816 : 365 - 374
  • [25] A Python']Python-based Automatic Detection Method for the Performance of Vibration-temperature Composite Sensor
    Yang, Chen
    Wan, Guo Chun
    Liu, Wen Jing
    Tong, Mei Song
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 1499 - 1503
  • [26] Solcore: a multi-scale, Python']Python-based library for modelling solar cells and semiconductor materials
    Alonso-Alvarez, D.
    Wilson, T.
    Pearce, P.
    Fuhrer, M.
    Farrell, D.
    Ekins-Daukes, N.
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17 (03) : 1099 - 1123
  • [27] Python-based fuzzy logic in automatic washer control system
    K. Raja
    [J]. Soft Computing, 2023, 27 : 6159 - 6185
  • [28] mango: A modular python']python-based agent simulation framework
    Schrage, Rico
    Sager, Jens
    Hoerding, Jan Philipp
    Holly, Stefanie
    [J]. SOFTWAREX, 2024, 27
  • [29] FitAO: a Python']Python-based platform for algorithmic development in AO
    Krokberg, Tomi
    Nousiainen, Jalo
    Lehtonen, Jonatan
    Helin, Tapio
    [J]. ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185
  • [30] PySPH: A Python']Python-based Framework for Smoothed Particle Hydrodynamics
    Ramachandran, Prabhu
    Bhosale, Aditya
    Puri, Kunal
    Negi, Pawan
    Muta, Abhinav
    Dinesh, A.
    Menon, Dileep
    Govind, Rahul
    Sanka, Suraj
    Sebastian, Amal S.
    Sen, Ananyo
    Kaushik, Rohan
    Kumar, Anshuman
    Kurapati, Vikas
    Patil, Mrinalgouda
    Tavker, Deep
    Pandey, Pankaj
    Kaushik, Chandrashekhar
    Dutt, Arkopal
    Agarwal, Arpit
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (04):