Solcore: a multi-scale, Python']Python-based library for modelling solar cells and semiconductor materials

被引:48
|
作者
Alonso-Alvarez, D. [1 ]
Wilson, T. [1 ]
Pearce, P. [1 ]
Fuhrer, M. [1 ]
Farrell, D. [1 ]
Ekins-Daukes, N. [1 ,2 ]
机构
[1] Imperial Coll London, Dept Phys, London, England
[2] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW, Australia
基金
英国工程与自然科学研究理事会;
关键词
Solar cell modelling; Quantum solvers; Semiconductor properties; Solar irradiance; Optical modelling; OPTICAL DIELECTRIC FUNCTION; DISPERSION-RELATIONS; LIGHT; GAAS; PARAMETERS; EXTENSION; IMPACT; ENERGY; INAS; GASB;
D O I
10.1007/s10825-018-1171-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computational models can provide significant insight into the operation mechanisms and deficiencies of photovoltaic solar cells. Solcore is a modular set of computational tools, written in Python 3, for the design and simulation of photovoltaic solar cells. Calculations can be performed on ideal, thermodynamic limiting behaviour, through to fitting experimentally accessible parameters such as dark and light IV curves and luminescence. Uniquely, it combines a complete semiconductor solver capable of modelling the optical and electrical properties of a wide range of solar cells, from quantum well devices to multi-junction solar cells. The model is a multi-scale simulation accounting for nanoscale phenomena such as the quantum confinement effects of semiconductor nanostructures, to micron level propagation of light through to the overall performance of solar arrays, including the modelling of the spectral irradiance based on atmospheric conditions. In this article, we summarize the capabilities in addition to providing the physical insight and mathematical formulation behind the software with the purpose of serving as both a research and teaching tool.
引用
收藏
页码:1099 / 1123
页数:25
相关论文
共 50 条
  • [1] Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials
    D. Alonso-Álvarez
    T. Wilson
    P. Pearce
    M. Führer
    D. Farrell
    N. Ekins-Daukes
    [J]. Journal of Computational Electronics, 2018, 17 : 1099 - 1123
  • [2] Multi_Scale_Tools: A Python']Python Library to Exploit Multi-Scale Whole Slide Images
    Marini, Niccolo
    Otalora, Sebastian
    Podareanu, Damian
    van Rijthoven, Mart
    van der Laak, Jeroen
    Ciompi, Francesco
    Mueller, Henning
    Atzori, Manfredo
    [J]. FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [3] KrakenOS: Python']Python-based general exact ray tracing library
    Herrera, Joel
    Guerrero, Carlos A.
    Najera, Morgan R.
    Sotelo-Burke, Anais
    Plauchu-Frayn, Ilse
    [J]. OPTICAL ENGINEERING, 2022, 61 (01)
  • [4] PlantGL: A Python']Python-based geometric library for 3D plant modelling at different scales
    Pradal, C.
    Boudon, F.
    Nouguier, C.
    Chopard, J.
    Godin, C.
    [J]. GRAPHICAL MODELS, 2009, 71 (1-6) : 1 - 21
  • [5] Implementation of Automatic Differentiation to Python']Python-based Semiconductor Device Simulator
    Ikegami, Tsutomu
    Fukuda, Koichi
    Hattori, Junichi
    [J]. 2019 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2019), 2019, : 41 - 44
  • [6] pygwb: A Python']Python-based Library for Gravitational-wave Background Searches
    Renzini, Arianna I.
    Romero-Rodriguez, Alba
    Talbot, Colm
    Lalleman, Max
    Kandhasamy, Shivaraj
    Turbang, Kevin
    Biscoveanu, Sylvia
    Martinovic, Katarina
    Meyers, Patrick
    Tsukada, Leo
    Janssens, Kamiel
    Davis, Derek
    Matas, Andrew
    Charlton, Philip
    Liu, Guo-Chin
    Dvorkin, Irina
    Banagiri, Sharan
    Bose, Sukanta
    Callister, Thomas
    De Lillo, Federico
    D'Onofrio, Luca
    Garufi, Fabio
    Harry, Gregg
    Lawrence, Jessica
    Mandic, Vuk
    Macquet, Adrian
    Michaloliakos, Ioannis
    Mitra, Sanjit
    Pham, Kiet
    Poggiani, Rosa
    Regimbau, Tania
    Romano, Joseph D.
    van Remortel, Nick
    Zhong, Haowen
    [J]. ASTROPHYSICAL JOURNAL, 2023, 952 (01):
  • [7] POCAL: a Python']Python-based library to perform optical coating analysis and design
    Fontanot, Tommaso
    Bhaumik, Ujjayanta
    Kishore, Ravi
    Meuret, Youri
    [J]. OPTICS CONTINUUM, 2023, 2 (04): : 810 - 824
  • [8] Proposal of a Novel Python']Python-Based Fuzzy Systems Library - Preliminary Results
    Zander, Eric
    Herrera, Alejandro
    Bede, Barnabas
    [J]. APPLICATIONS OF FUZZY TECHNIQUES, NAFIPS 2022, 2023, 500 : 348 - 363
  • [9] Acceleration of a Python']Python-based Tsunami Modelling Application via CUDA and OpenHMPP
    Weng, Zhe
    Strazdins, Peter E.
    [J]. PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 1276 - 1285
  • [10] A Python']Python-based interface to examine motions in time series of solar images
    Campos-Rozo, J. I.
    Dominguez, S. Vargas
    [J]. FINE STRUCTURE AND DYNAMICS OF THE SOLAR ATMOSPHERE, 2017, 12 (S327): : 25 - 27