A Python']Python-based interface to examine motions in time series of solar images

被引:0
|
作者
Campos-Rozo, J. I. [1 ]
Dominguez, S. Vargas [1 ]
机构
[1] Univ Nacl Colombia, Observ Astron Nacl, Bogota, Colombia
来源
关键词
GUI; Solar Physics; !text type='Python']Python[!/text; Sunpy; LCT;
D O I
10.1017/S1743921317003568
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.
引用
收藏
页码:25 / 27
页数:3
相关论文
共 50 条
  • [1] TSEA: An Open Source Python']Python-Based Annotation Tool for Time Series Data
    Selzler, Roger
    Chan, Adrian D. C.
    Green, James R.
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (IEEE MEMEA 2021), 2021,
  • [2] Integration of Python']Python-Based MDSPLUS Interface for ICRH DAC Software
    Joshi, Ramesh
    Kulkarni, Swanand S.
    Kulkarni, S. V.
    [J]. PROGRESS IN ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, PROCEEDINGS OF ICACIE 2016, VOLUME 1, 2018, 563 : 447 - 456
  • [3] QuaPy: A Python']Python-Based Framework for Quantification
    Moreo, Alejandro
    Esuli, Andrea
    Sebastiani, Fabrizio
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4534 - 4543
  • [4] Python']Python-based In Situ Analysis and Visualization
    Loring, Burlen
    Myers, Andrew
    Camp, David
    Bethel, E. Wes
    [J]. PROCEEDINGS OF IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION (ISAV 2018), 2018, : 19 - 24
  • [5] PACO: Python']Python-Based Atmospheric Correction
    de los Reyes, Raquel
    Langheinrich, Maximilian
    Schwind, Peter
    Richter, Rudolf
    Pflug, Bringfried
    Bachmann, Martin
    Mueller, Rupert
    Carmona, Emiliano
    Zekoll, Viktoria
    Reinartz, Peter
    [J]. SENSORS, 2020, 20 (05)
  • [6] GPUPeP: Parallel Enzymatic Numerical P System simulator with a Python']Python-based interface
    Raghavan, S.
    Rai, Shanthanu S.
    Rohit, M. P.
    Chandrasekaran, K.
    [J]. BIOSYSTEMS, 2020, 196
  • [7] pyOpenMS: A Python']Python-based interface to the OpenMS mass-spectrometry algorithm library
    Roest, Hannes L.
    Schmitt, Uwe
    Aebersold, Ruedi
    Malmstroem, Lars
    [J]. PROTEOMICS, 2014, 14 (01) : 74 - 77
  • [8] Solar energetic particle time series analysis with Python']Python
    Palmroos, Christian
    Gieseler, Jan
    Dresing, Nina
    Morosan, Diana E.
    Asvestari, Eleanna
    Yli-Laurila, Aleksi
    Price, Daniel J.
    Valkila, Saku
    Vainio, Rami
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [9] A Python']Python-based undergraduate course in computational macroeconomics
    Jenkins, Brian C.
    [J]. JOURNAL OF ECONOMIC EDUCATION, 2022, 53 (02): : 126 - 140
  • [10] An Introduction to Programming for Bioscientists: A Python']Python-Based Primer
    Ekmekci, Berk
    McAnany, Charles E.
    Mura, Cameron
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (06)