A Python']Python-based undergraduate course in computational macroeconomics

被引:3
|
作者
Jenkins, Brian C. [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
来源
JOURNAL OF ECONOMIC EDUCATION | 2022年 / 53卷 / 02期
关键词
Computational techniques; macroeconomics; undergraduate teaching; TEACHING-DSGE; POLICY;
D O I
10.1080/00220485.2022.2038322
中图分类号
F [经济];
学科分类号
02 ;
摘要
The author of this article describes a new undergraduate course where students use Python programming for macroeconomic data analysis and modeling. Students develop basic familiarity with dynamic optimization and simulating linear dynamic models, basic stochastic processes, real business cycle models, and New Keynesian business cycle models. Students also gain familiarity with the popular Python libraries NumPy, Matplotlib, and pandas and make extensive use of the Jupyter Notebook. For many students in the course, this is their first experience with computer programming in any language. Feedback from students suggests that, regardless of prior programming experience, they find the course to be valuable, interesting, and enjoyable.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条
  • [1] A Python']Python-based programming language for high-performance computational genomics
    Shajii, Ariya
    Numanagic, Ibrahim
    Leighton, Alexander T.
    Greenyer, Haley
    Amarasinghe, Saman
    Berger, Bonnie
    [J]. NATURE BIOTECHNOLOGY, 2021, 39 (09) : 1062 - 1064
  • [2] QuaPy: A Python']Python-Based Framework for Quantification
    Moreo, Alejandro
    Esuli, Andrea
    Sebastiani, Fabrizio
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4534 - 4543
  • [3] Python']Python-based In Situ Analysis and Visualization
    Loring, Burlen
    Myers, Andrew
    Camp, David
    Bethel, E. Wes
    [J]. PROCEEDINGS OF IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION (ISAV 2018), 2018, : 19 - 24
  • [4] PACO: Python']Python-Based Atmospheric Correction
    de los Reyes, Raquel
    Langheinrich, Maximilian
    Schwind, Peter
    Richter, Rudolf
    Pflug, Bringfried
    Bachmann, Martin
    Mueller, Rupert
    Carmona, Emiliano
    Zekoll, Viktoria
    Reinartz, Peter
    [J]. SENSORS, 2020, 20 (05)
  • [5] Work in progress: An introduction to computing course using a Python']Python-based experiential approach
    Avouris, Nikolaos
    Sgarbas, Kyriakos
    Paliouras, Vassilis
    Koukias, Michalis
    [J]. PROCEEDINGS OF 2017 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON2017), 2017, : 1663 - 1666
  • [6] A Python']Python-based laboratory course for image and video signal processing on embedded systems
    Jaskolka, Karina
    Seiler, Juergen
    Beyer, Frank
    Kaup, Andre
    [J]. HELIYON, 2019, 5 (10)
  • [7] An Introduction to Programming for Bioscientists: A Python']Python-Based Primer
    Ekmekci, Berk
    McAnany, Charles E.
    Mura, Cameron
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (06)
  • [8] PYSCF: the Python']Python-based simulations of chemistry framework
    Sun, Qiming
    Berkelbach, Timothy C.
    Blunt, Nick S.
    Booth, George H.
    Guo, Sheng
    Li, Zhendong
    Liu, Junzi
    McClain, James D.
    Sayfutyarova, Elvira R.
    Sharma, Sandeep
    Wouters, Sebastian
    Chan, Garnet Kin-Lic
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (01)
  • [9] Improving the Latency of Python']Python-based Web Applications
    Esteves, Antonio
    Fernandes, Joao
    [J]. WEBIST: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, 2019, : 193 - 201
  • [10] pyMBE: The Python']Python-based molecule builder for ESPResSo
    Beyer, David
    Torres, Paola B.
    Pineda, Sebastian P.
    Narambuena, Claudio F.
    Grad, Jean-Noel
    Kosovan, Peter
    Blanco, Pablo M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (02):