ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

被引:96
|
作者
Gerdes, David W. [1 ]
Sypniewski, Adam J. [1 ]
McKay, Timothy A. [1 ]
Hao, Jiangang [1 ]
Weis, Matthew R. [1 ]
Wechsler, Risa H. [2 ,3 ]
Busha, Michael T. [2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Stanford Univ, Kavli Inst Particle Phys Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, SLAC Natl Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2010年 / 715卷 / 02期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
galaxies: distances and redshifts; galaxies: statistics; large-scale structure of universe; methods: data analysis; methods: statistical; DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; DEEP; SDSS; MACHINE; MASS; LUMINOSITY; EVOLUTION; GALAXIES; QUASARS;
D O I
10.1088/0004-637X/715/2/823
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single "best estimate" and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.
引用
下载
收藏
页码:823 / 832
页数:10
相关论文
共 50 条
  • [31] Boosted Decision Trees for Vertebral Column Disease Diagnosis
    Azar, Ahmad Taher
    Ali, Hanaa S.
    Balas, Valentina E.
    Olariu, Teodora
    Ciurea, Rujita
    SOFT COMPUTING APPLICATIONS, (SOFA 2014), VOL 1, 2016, 356 : 319 - 333
  • [32] Studies of boosted decision trees for MiniBooNE particle identification
    Yang, HJ
    Roe, BP
    Zhu, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 555 (1-2): : 370 - 385
  • [33] Boosted decision trees for behaviour mining of concurrent programmes
    Avros, R.
    Dudka, V.
    Krena, B.
    Letko, Z.
    Pluhackova, H.
    Ur, S.
    Vojnar, T.
    Volkovich, Z.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (21):
  • [34] An analysis of boosted ensembles of binary fuzzy decision trees
    Barsacchi, Marco
    Bechini, Alessio
    Marcelloni, Francesco
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 154
  • [35] Adversarial Training of Gradient-Boosted Decision Trees
    Calzavara, Stefano
    Lucchese, Claudio
    Tolomei, Gabriele
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2429 - 2432
  • [36] Gradient boosted decision trees for combustion chemistry integration
    Yao, S.
    Kronenburg, A.
    Shamooni, A.
    Stein, O. T.
    Zhang, W.
    APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2022, 11
  • [37] Photometric redshifts of galaxies in COSMOS
    Mobasher, B.
    Capak, P.
    Scoville, N. Z.
    Dahlen, T.
    Salvato, M.
    Aussel, H.
    Thompson, D. J.
    Feldmann, R.
    Tasca, L.
    Lefevre, O.
    Lilly, S.
    Carollo, C. M.
    Kartaltepe, J. S.
    McCracken, H.
    Mould, J.
    Renzini, A.
    Sanders, D. B.
    Shopbell, P. L.
    Taniguchi, Y.
    Ajiki, M.
    Shioya, Y.
    Contini, T.
    Giavalisco, M.
    Ilbert, O.
    Iovino, A.
    Le Brun, V.
    Mainieri, V.
    Mignoli, M.
    Scodeggio, M.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2007, 172 (01): : 117 - 131
  • [38] Improved γ/hadron separation for the detection of faint γ-ray sources using boosted decision trees
    Krause, Maria
    Pueschel, Elisa
    Maier, Gernot
    ASTROPARTICLE PHYSICS, 2017, 89 : 1 - 9
  • [39] Particle identification using Boosted Decision Trees in the semi-digital hadronic calorimeter
    Liu, B.
    Laktineh, I.
    Shen, Q.
    Garillot, G.
    Guo, J.
    Lagarde, F.
    Wang, X.
    Zhu, Y.
    Yang, H.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (05)
  • [40] Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees
    Almeida, Renan N. D.
    Greenberg, Michael
    Bundalovic-Torma, Cedoljub
    Martel, Alexandre
    Wang, Pauline W.
    Middleton, Maggie A.
    Chatterton, Syama
    Desveaux, Darrell
    Guttman, David S.
    PLOS PATHOGENS, 2022, 18 (07)