ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

被引:96
|
作者
Gerdes, David W. [1 ]
Sypniewski, Adam J. [1 ]
McKay, Timothy A. [1 ]
Hao, Jiangang [1 ]
Weis, Matthew R. [1 ]
Wechsler, Risa H. [2 ,3 ]
Busha, Michael T. [2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Stanford Univ, Kavli Inst Particle Phys Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, SLAC Natl Lab, Stanford, CA 94305 USA
来源
ASTROPHYSICAL JOURNAL | 2010年 / 715卷 / 02期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
galaxies: distances and redshifts; galaxies: statistics; large-scale structure of universe; methods: data analysis; methods: statistical; DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; DEEP; SDSS; MACHINE; MASS; LUMINOSITY; EVOLUTION; GALAXIES; QUASARS;
D O I
10.1088/0004-637X/715/2/823
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single "best estimate" and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.
引用
收藏
页码:823 / 832
页数:10
相关论文
共 50 条
  • [21] Effect of training characteristics on object classification: An application using Boosted Decision Trees
    Sevilla-Noarbe, I.
    Etayo-Sotos, P.
    ASTRONOMY AND COMPUTING, 2015, 11 : 64 - 72
  • [22] Pipe failure modelling for water distribution networks using boosted decision trees
    Winkler, Daniel
    Haltmeier, Markus
    Kleidorfer, Manfred
    Rauch, Wolfgang
    Tscheikner-Gratl, Franz
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2018, 14 (10) : 1402 - 1411
  • [23] Identification of Patient Prescribing Predicting Cancer Diagnosis Using Boosted Decision Trees
    French, Josephine
    Chen, Cong
    Henson, Katherine
    Shand, Brian
    Ferris, Patrick
    Pencheon, Josh
    Vernon, Sally
    Rafiq, Meena
    Howe, David
    Lyratzopoulos, Georgios
    Rashbass, Jem
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2019, 2019, 11526 : 328 - 333
  • [24] Optimising pin-in-paste technology using gradient boosted decision trees
    Martinek, Peter
    Krammer, Oliver
    SOLDERING & SURFACE MOUNT TECHNOLOGY, 2018, 30 (03) : 164 - 170
  • [25] Automated proton track identification in MicroBooNE using gradient boosted decision trees
    Woodruff, Katherine
    18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
  • [26] Classification of Biodegradable Substances Using Balanced Random Trees and Boosted C5.0 Decision Trees
    Elsayad, Alaa M.
    Nassef, Ahmed M.
    Al-Dhaifallah, Mujahed
    Elsayad, Khaled A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (24) : 1 - 22
  • [27] Estimating photometric redshifts using support vector machines
    Wadadekar, Y
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2005, 117 (827) : 79 - 85
  • [28] Identification of high redshift clusters using photometric redshifts
    Kodama, T
    Bell, EF
    Bower, RG
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 160 - 165
  • [29] EVOLUTION OF GALAXY LUMINOSITY FUNCTION USING PHOTOMETRIC REDSHIFTS
    Ramos, B. H. F.
    Pellegrini, P. S.
    Benoist, C.
    da Costa, L. N.
    Maia, M. A. G.
    Makler, M.
    Ogando, R. L. C.
    de Simoni, F.
    Mesquita, A. A.
    ASTRONOMICAL JOURNAL, 2011, 142 (02):
  • [30] Using Gamma Regression for Photometric Redshifts of Survey Galaxies
    Elliott, J.
    de Souza, R. S.
    Krone-Martins, A.
    Cameron, E.
    Ishida, E. E. O.
    Hilbe, J.
    UNIVERSE OF DIGITAL SKY SURVEYS: A MEETING TO HONOUR THE 70TH BIRTHDAY OF MASSIMO CAPACCIOLI, 2016, 42 : 91 - 96