The scINSIGHT Package for Integrating Single-Cell RNA-Seq Data from Different Biological Conditions

被引:0
|
作者
Qian, Kun [1 ]
Fu, Shiwei [2 ,3 ]
Li, Hongwei [1 ]
Li, Wei Vivian [2 ,3 ,4 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan, Peoples R China
[2] Rutgers State Univ, Rutgers Sch Publ Hlth, Dept Biostat & Epidemiol, Piscataway, NJ USA
[3] Univ Calif Riverside, Dept Stat, Riverside, CA USA
[4] Univ Calif Riverside, Dept Stat, 900 Univ Ave,Olmsted Hall 1337, Riverside, CA 92591 USA
基金
美国国家卫生研究院;
关键词
clustering; data integration; non-negative matrix factorization; scRNA-seq;
D O I
10.1089/cmb.2022.0244
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Data integration is a critical step in the analysis of multiple single-cell RNA sequencing samples to account for heterogeneity due to both biological and technical variability. scINSIGHT is a new integration method for single-cell gene expression data, and can effectively use the information of biological condition to improve the integration of multiple single-cell samples. scINSIGHT is based on a novel non-negative matrix factorization model that learns common and condition-specific gene modules in samples from different biological or experimental conditions. Using these gene modules, scINSIGHT can further identify cellular identities and active biological processes in different cell types or conditions. Here we introduce the installation and main functionality of the scINSIGHT R package, including how to preprocess the data, apply the scINSIGHT algorithm, and analyze the output.
引用
收藏
页码:1233 / 1236
页数:4
相关论文
共 50 条
  • [1] ascend: R package for analysis of single-cell RNA-seq data
    Senabouth, Anne
    Lukowski, Samuel W.
    Hernandez, Jose Alquicira
    Andersen, Stacey B.
    Mei, Xin
    Nguyen, Quan H.
    Powell, Joseph E.
    GIGASCIENCE, 2019, 8 (08):
  • [2] scCancer: a package for automated processing of single-cell RNA-seq data in cancer
    Guo, Wenbo
    Wang, Dongfang
    Wang, Shicheng
    Shan, Yiran
    Liu, Changyi
    Gu, Jin
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [3] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [4] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [6] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [7] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [8] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [9] Integrating single-cell RNA-seq and imaging with SCOPE-seq2
    Liu, Zhouzerui
    Yuan, Jinzhou
    Lasorella, Anna
    Iavarone, Antonio
    Bruce, Jeffrey N.
    Canoll, Peter
    Sims, Peter A.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Integrating single-cell RNA-seq and imaging with SCOPE-seq2
    Zhouzerui Liu
    Jinzhou Yuan
    Anna Lasorella
    Antonio Iavarone
    Jeffrey N. Bruce
    Peter Canoll
    Peter A. Sims
    Scientific Reports, 10