Korteweg-de!Vries solitons in relativistic hydrodynamics

被引:16
|
作者
Fogaca, D. A. [1 ]
Navarra, F. S. [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/j.physletb.2007.01.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the previous work, assuming that the nucleus can be treated as a perfect fluid, we have studied the propagation of perturbations in the baryon density. For a given equation of state we have derived a Korteweg-de Vries (KdV) equation from Euler and continuity equations in non-relativistic hydrodynamics. Here, using a more general equation of state, we extend our formalism to relativistic hydrodynamics. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:408 / 411
页数:4
相关论文
共 50 条
  • [31] STRONG INTERACTION OF SOLITONS GOVERNED BY KORTEWEG-DE VRIES EQUATION
    SHIH, LY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (17): : 2109 - 2119
  • [32] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [33] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [34] Korteweg-de Vries surfaces
    Gurses, Metin
    Tek, Suleyman
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 11 - 22
  • [35] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [36] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Jiang, Yan
    Xue, Yue-Shan
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [37] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Pan Wang
    Bo Tian
    Wen-Jun Liu
    Yan Jiang
    Yue-Shan Xue
    The European Physical Journal D, 2012, 66
  • [38] SOLITONS, KINKS AND SINGULAR SOLUTIONS OF COUPLED KORTEWEG-DE VRIES EQUATIONS
    Ahmed, Bouthina S.
    Biswas, Anjan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (02): : 111 - 120
  • [39] Korteweg-de Vries description of Helmholtz-Kerr dark solitons
    Christian, J. M.
    McDonald, G. S.
    Chamorro-Posada, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (50): : 15355 - 15363
  • [40] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401