On Symmetric Cayley Graphs of Valency Eleven

被引:0
|
作者
Ling, Bo [1 ]
Lou, Bengong [2 ]
Ma, Li [3 ]
Yu, Xue [4 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650504, Yunnan, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650031, Yunnan, Peoples R China
[3] Qujing Normal Univ, Coll Math & Stat, Qujing 655011, Yunnan, Peoples R China
[4] Henan Inst Sci & Technol, Dept Math, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
nonabelian simple group; normal Cayley graph; symmetric graph; TRANSITIVE GRAPHS; AUTOMORPHISM-GROUPS; VERTEX STABILIZERS;
D O I
10.1142/S1005386721000249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Cayley graph Gamma = Cay(G,S) is said to be normal if G is normal in Aut Gamma. In this paper, we investigate the normality problem of the connected 11-valent symmetric Cayley graphs Gamma of finite nonabelian simple groups G, where the vertex stabilizer Av is soluble for A=Aut Gamma and v is an element of V Gamma. We prove that either Gamma is normal or G=A(5), A(10), A(54), A(274), A(549) or A(1099). Further, 11-valent symmetric nonnormal Cayley graphs of A(5), A(54) and A(274) are constructed. This provides some more examples of nonnormal 11-valent symmetric Cayley graphs of finite nonabelian simple groups after the first graph of this kind (of valency 11) was constructed by Fang, Ma and Wang in 2011.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 50 条