On Symmetric Cayley Graphs of Valency Eleven

被引:0
|
作者
Ling, Bo [1 ]
Lou, Bengong [2 ]
Ma, Li [3 ]
Yu, Xue [4 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650504, Yunnan, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650031, Yunnan, Peoples R China
[3] Qujing Normal Univ, Coll Math & Stat, Qujing 655011, Yunnan, Peoples R China
[4] Henan Inst Sci & Technol, Dept Math, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
nonabelian simple group; normal Cayley graph; symmetric graph; TRANSITIVE GRAPHS; AUTOMORPHISM-GROUPS; VERTEX STABILIZERS;
D O I
10.1142/S1005386721000249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Cayley graph Gamma = Cay(G,S) is said to be normal if G is normal in Aut Gamma. In this paper, we investigate the normality problem of the connected 11-valent symmetric Cayley graphs Gamma of finite nonabelian simple groups G, where the vertex stabilizer Av is soluble for A=Aut Gamma and v is an element of V Gamma. We prove that either Gamma is normal or G=A(5), A(10), A(54), A(274), A(549) or A(1099). Further, 11-valent symmetric nonnormal Cayley graphs of A(5), A(54) and A(274) are constructed. This provides some more examples of nonnormal 11-valent symmetric Cayley graphs of finite nonabelian simple groups after the first graph of this kind (of valency 11) was constructed by Fang, Ma and Wang in 2011.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 50 条
  • [21] On Cayley graphs on the symmetric group generated by tranpositions
    Friedman, J
    COMBINATORICA, 2000, 20 (04) : 505 - 519
  • [22] Resistance distances in Cayley graphs on symmetric groups
    Vaskouski, Maksim
    Zadorozhnyuk, Anna
    DISCRETE APPLIED MATHEMATICS, 2017, 227 : 121 - 135
  • [23] Class of Hamiltonian cayley graphs on the symmetric group
    Wang, Shiying
    Liu, Guangwu
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2002, 26 (03):
  • [24] On Cayley Graphs on the Symmetric Group Generated by Tranpositions
    Joel Friedman
    Combinatorica, 2000, 20 : 505 - 519
  • [25] Bounds on the diameter of Cayley graphs of the symmetric group
    John Bamberg
    Nick Gill
    Thomas P. Hayes
    Harald A. Helfgott
    Ákos Seress
    Pablo Spiga
    Journal of Algebraic Combinatorics, 2014, 40 : 1 - 22
  • [26] Bounds on the diameter of Cayley graphs of the symmetric group
    Bamberg, John
    Gill, Nick
    Hayes, Thomas P.
    Helfgott, Harald A.
    Seress, Akos
    Spiga, Pablo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (01) : 1 - 22
  • [27] Arc-transitive Cayley Graphs of Valency Five on Abelian Groups
    Alaeiyan, Mehdi
    Talebi, Ali A.
    Paryab, Khalil
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (06) : 1029 - 1035
  • [28] On groups all of whose undirected Cayley graphs of bounded valency are integral
    Estelyi, Istvan
    Kovacs, Istvan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [29] A CHARACTERIZATION OF A CLASS OF SYMMETRIC GRAPHS OF TWICE PRIME VALENCY
    PRAEGER, CE
    XU, MY
    EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (01) : 91 - 102
  • [30] Symmetric graphs of valency five and their basic normal quotients
    Yang, Da-Wei
    Feng, Yan-Quan
    Kwak, Jin Ho
    Lee, Jaeun
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 236 - 246