A Novel Inertial Projection and Contraction Method for Solving Pseudomonotone Variational Inequality Problems

被引:70
|
作者
Cholamjiak, Prasit [1 ]
Duong Viet Thong [2 ]
Cho, Yeol Je [3 ,4 ]
机构
[1] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[2] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词
Inertial contraction projection method; Mann-type method; Pseudomonotone mapping; Pseudomonotone variational inequality problem; SUBGRADIENT EXTRAGRADIENT METHOD; MAXIMAL MONOTONE-OPERATORS; PROXIMAL POINT ALGORITHM; STRONG-CONVERGENCE; HEMIVARIATIONAL INEQUALITIES; ITERATIVE METHODS; WEAK-CONVERGENCE; GRADIENT METHODS; WELL-POSEDNESS; HYBRID METHOD;
D O I
10.1007/s10440-019-00297-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new algorithm which combines the inertial contraction projection method and the Mann-type method (Mann in Proc. Am. Math. Soc. 4:506-510, 1953) for solving monotone variational inequality problems in real Hilbert spaces. The strong convergence of our proposed algorithm is proved under some standard assumptions imposed on cost operators. Finally, we give some numerical experiments to illustrate the proposed algorithm and the main result.
引用
收藏
页码:217 / 245
页数:29
相关论文
共 50 条
  • [21] New strong convergence theorem of the inertial projection and contraction method for variational inequality problems
    Duong Viet Thong
    Nguyen The Vinh
    Yeol Je Cho
    [J]. Numerical Algorithms, 2020, 84 : 285 - 305
  • [22] New strong convergence theorem of the inertial projection and contraction method for variational inequality problems
    Thong, Duong Viet
    Vinh, Nguyen The
    Cho, Yeol Je
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (01) : 285 - 305
  • [23] Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 30102 - 30119
  • [24] Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems
    Bing Tan
    Liya Liu
    Xiaolong Qin
    [J]. Japan Journal of Industrial and Applied Mathematics, 2021, 38 : 519 - 543
  • [25] Tseng's extragradient method with double projection for solving pseudomonotone variational inequality problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Li, Xiaoxiao
    Dong, Qiao-Li
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [26] Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    Themistocles M. Rassias
    [J]. Optimization Letters, 2020, 14 : 115 - 144
  • [27] Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems
    Tan, Bing
    Liu, Liya
    Qin, Xiaolong
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2021, 38 (02) : 519 - 543
  • [28] Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    Rassias, Themistocles M.
    [J]. OPTIMIZATION LETTERS, 2020, 14 (01) : 115 - 144
  • [29] Projection and Contraction Methods for Solving Bilevel Pseudomonotone Variational Inequalities
    Yang, Jun
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2022, 177 (01)
  • [30] Projection and Contraction Methods for Solving Bilevel Pseudomonotone Variational Inequalities
    Jun Yang
    [J]. Acta Applicandae Mathematicae, 2022, 177