Cox regression of clustered event times with covariates missing not at random

被引:1
|
作者
Liu, Li [1 ]
Liu, Yanyan [1 ]
Xiong, Yi [2 ]
Hu, X. Joan [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
extended EM algorithm; frailty model; likelihood-based estimation; semiparametric regression; PROPORTIONAL HAZARDS MODEL; MAXIMUM-LIKELIHOOD; FRAILTY MODELS; CONSISTENCY;
D O I
10.1111/sjos.12409
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by a recent tuberculosis (TB) study, this paper is concerned with covariates missing not at random (MNAR) and models the potential intracluster correlation by a frailty. We consider the regression analysis of right-censored event times from clustered subjects under a Cox proportional hazards frailty model and present the semiparametric maximum likelihood estimator (SPMLE) of the model parameters. An easy-to-implement pseudo-SPMLE is then proposed to accommodate more realistic situations using readily available supplementary information on the missing covariates. Algorithms are provided to compute the estimators and their consistent variance estimators. We demonstrate that both the SPMLE and the pseudo-SPMLE are consistent and asymptotically normal by the arguments based on the theory of modern empirical processes. The proposed approach is examined numerically via simulation and illustrated with an analysis of the motivating TB study data.
引用
收藏
页码:1315 / 1346
页数:32
相关论文
共 50 条
  • [41] Nonparametric regression with selectively missing covariates
    Breunig, Christoph
    Haan, Peter
    [J]. JOURNAL OF ECONOMETRICS, 2021, 223 (01) : 28 - 52
  • [42] Proportional hazards regression with missing covariates
    Chen, HY
    Little, RJA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) : 896 - 908
  • [43] On functional misspecification of covariates in the Cox regression model
    Gerds, TA
    Schumacher, M
    [J]. BIOMETRIKA, 2001, 88 (02) : 572 - 580
  • [44] Cox regression model with randomly censored covariates
    Atem, Folefac D.
    Matsouaka, Roland A.
    Zimmern, Vincent E.
    [J]. BIOMETRICAL JOURNAL, 2019, 61 (04) : 1020 - 1032
  • [45] Predictive accuracy of covariates for event times
    Chen, Li
    Lin, D. Y.
    Zeng, Donglin
    [J]. BIOMETRIKA, 2012, 99 (03) : 615 - 630
  • [46] SEMIPARAMETRIC ESTIMATION FOR REGRESSION COEFFICIENTS IN THE COX MODEL WITH FAILURE INDICATORS MISSING AT RANDOM
    Liu, Chunling
    Wang, Qihua
    [J]. STATISTICA SINICA, 2010, 20 (03) : 1125 - 1142
  • [47] On using the Cox proportional hazards model with missing covariates
    Paik, MC
    Tsai, WY
    [J]. BIOMETRIKA, 1997, 84 (03) : 579 - 593
  • [48] The EM algorithm for mixture regression with missing covariates
    Kim, Hyungmin
    Ham, Geonhee
    Seo, Byungtae
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1347 - 1359
  • [49] Random partition models with regression on covariates
    Muellner, Peter
    Quintana, Fernando
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (10) : 2801 - 2808
  • [50] Model averaging with covariates that are missing completely at random
    Zhang, Xinyu
    [J]. ECONOMICS LETTERS, 2013, 121 (03) : 360 - 363