Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

被引:6
|
作者
Lee, Yoonsang [1 ]
Engquist, Bjorn [2 ,3 ]
机构
[1] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas Austin, ICES, Austin, TX 78712 USA
关键词
Multiscale methods; Seamless; Advection enhanced diffusion; MONTE-CARLO METHOD; MODELS;
D O I
10.1016/j.jcp.2016.04.046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [21] Shifted Feedback Suppression of Turbulent Behavior in Advection-Diffusion Systems
    Evain, C.
    Szwaj, C.
    Bielawski, S.
    Hosaka, M.
    Mochihashi, A.
    Katoh, M.
    Couprie, M. -E.
    PHYSICAL REVIEW LETTERS, 2009, 102 (13)
  • [22] Tensorlines: Advection-diffusion based propagation through diffusion tensor fields
    Weinstein, David
    Kindlmann, Gordon
    Lundberg, Eric
    Proceedings of the IEEE Visualization Conference, 1999, : 249 - 253
  • [23] Numerical stability of the BEM foe advection-diffusion problems
    Peratta, A
    Popov, V
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) : 675 - 702
  • [24] MULTIGRID TECHNIQUES FOR THE SOLUTION OF THE PASSIVE SCALAR ADVECTION-DIFFUSION EQUATION
    PHILLIPS, RE
    SCHMIDT, FW
    NUMERICAL HEAT TRANSFER, 1985, 8 (01): : 25 - 43
  • [25] NONLINEAR INSTABILITY IN ADVECTION-DIFFUSION NUMERICAL MODELS.
    Adam, Y.
    1600, (09):
  • [26] Optimal control and numerical adaptivity for advection-diffusion equations
    Dede', L
    Quarteroni, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (05): : 1019 - 1040
  • [27] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [28] Numerical approximation of a control problem for advection-diffusion processes
    Quarteroni, A
    Rozza, G
    Dede, L
    Quaini, A
    SYSTEM MODELING AND OPTIMIZATION, 2006, 199 : 261 - +
  • [29] Modeling stratified suspension concentration distribution in turbulent flow using fractional advection-diffusion equation
    Kundu, Snehasis
    ENVIRONMENTAL FLUID MECHANICS, 2019, 19 (06) : 1557 - 1574
  • [30] Numerical analysis of advection-diffusion in the continuum with thin canal
    Savula, YH
    Koukharskyi, VM
    Chaplia, YY
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1998, 33 (03) : 341 - 351