NONLINEAR INSTABILITY IN ADVECTION-DIFFUSION NUMERICAL MODELS.

被引:0
|
作者
Adam, Y. [1 ]
机构
[1] Mathematical Model of the North Sea, & Scheldt Estuary, Management, Unit, Liege, Belg, Mathematical Model of the North Sea & Scheldt Estuary, Management Unit, Liege, Belg
来源
| 1600年 / 09期
关键词
451 Air Pollution - 453 Water Pollution - 921 Mathematics - 931 Classical Physics; Quantum Theory; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Nonlinear Advection-Diffusion Models of Traffic Flow: a Numerical Study
    Matin, Hossein Nick Zinat
    Do, Dawson
    Delle Monache, Maria Laura
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2078 - 2083
  • [2] NONLINEAR INSTABILITY IN ADVECTION DIFFUSION NUMERICAL-MODELS
    ADAM, Y
    [J]. APPLIED MATHEMATICAL MODELLING, 1985, 9 (06) : 434 - 440
  • [3] Lattice models of advection-diffusion
    Pierrehumbert, RT
    [J]. CHAOS, 2000, 10 (01) : 61 - 74
  • [4] A second order numerical method for solving advection-diffusion models
    Company, R.
    Ponsoda, E.
    Romero, J. -V.
    Rosello, M. -D.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (5-6) : 806 - 811
  • [5] Numerical solution of an advection-diffusion equation
    Solución numérica de una ecuación del tipo advección-difusión
    [J]. 1600, Centro de Informacion Tecnologica (25):
  • [6] Nonlocal Nonlinear Advection-Diffusion Equations
    Constantin, Peter
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 281 - 292
  • [7] Nonlocal nonlinear advection-diffusion equations
    Peter Constantin
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 281 - 292
  • [8] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    Parvizi, M.
    Eslahchi, M. R.
    Dehghan, Mehdi
    [J]. NUMERICAL ALGORITHMS, 2015, 68 (03) : 601 - 629
  • [9] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    M. Parvizi
    M. R. Eslahchi
    Mehdi Dehghan
    [J]. Numerical Algorithms, 2015, 68 : 601 - 629
  • [10] Nonlocal Nonlinear Advection-Diffusion Equations
    Peter CONSTANTIN
    [J]. Chinese Annals of Mathematics,Series B, 2017, (01) : 281 - 292