NONLINEAR INSTABILITY IN ADVECTION-DIFFUSION NUMERICAL MODELS.

被引:0
|
作者
Adam, Y. [1 ]
机构
[1] Mathematical Model of the North Sea, & Scheldt Estuary, Management, Unit, Liege, Belg, Mathematical Model of the North Sea & Scheldt Estuary, Management Unit, Liege, Belg
来源
| 1600年 / 09期
关键词
451 Air Pollution - 453 Water Pollution - 921 Mathematics - 931 Classical Physics; Quantum Theory; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [41] Analytical and Numerical Solutions of Fractional Type Advection-diffusion Equation
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [42] On the Numerical Solution of Advection-Diffusion Problems with Singular Source Terms
    Soykan, Ezgi
    Ahlatcioglu, Mehmet
    Ashyraliyev, Maksat
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
  • [43] A STABILIZED DISCONTINUOUS GALERKIN METHOD FOR THE NONLINEAR ADVECTION-DIFFUSION PROCESSES
    Tunc, Huseyin
    Sari, Murat
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2021, 47 (01): : 24 - 45
  • [44] Numerical efficiency of some exponential methods for an advection-diffusion equation
    Eduardo Macias-Diaz, Jorge
    Inan, Bilge
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (05) : 1005 - 1029
  • [45] A perturbative approach to a nonlinear advection-diffusion equation of particle transport
    Walter, Dominik
    Fichtner, Horst
    Litvinenko, Yuri
    PHYSICS OF PLASMAS, 2020, 27 (08)
  • [46] A perturbative approach to a nonlinear advection-diffusion equation of particle transport
    Walter, Dominik
    Fichtner, Horst
    Litvinenkov, Yuri
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [47] Numerical Analysis of the Advection-Diffusion of a Solute in Porous Media with Uncertainty
    Charrier, Julia
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 650 - 685
  • [48] Local and Global Existence for Nonlocal Multispecies Advection-Diffusion Models
    Giunta, Valeria
    Hillen, Thomas
    Lewis, Mark
    Potts, Jonathan R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (03): : 1686 - 1708
  • [49] Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations
    Xu, Yufeng
    Agrawal, Om P.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1178 - 1193
  • [50] Advection-diffusion in Lagrangian coordinates
    Thiffeault, JL
    PHYSICS LETTERS A, 2003, 309 (5-6) : 415 - 422