Collecting Pretransfusion Samples Using Electronic Patient Identification Reduces Wrong Blood in Tube Errors

被引:0
|
作者
Kaufman, Richard M. [1 ]
Yazer, Mark H. [2 ]
Dinh, Anh [3 ]
Flanagan, Peter [4 ]
Raspollini, Elisabetta [5 ]
Cohn, Claudia S. [6 ]
Dunbar, Nancy M. [7 ]
Selleng, Kathleen [8 ]
Ziman, Alyssa [9 ]
Fung, Mark K. [10 ]
Gorlin, Jed B. [11 ]
Staves, Julie [12 ]
Murphy, Michael [13 ]
Melanson, Stacy [14 ]
机构
[1] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15260 USA
[3] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[4] New Zealand Blood Serv, Epsom, New Zealand
[5] Osped Maggiore Policlin, Milan, Italy
[6] Univ Minnesota, Minneapolis, MN 55455 USA
[7] Dartmouth Hitchcock Med Ctr, Lebanon, NH 03766 USA
[8] Univ Med Greifswald, Inst Immunol & Transfus Med, Greifswald, Germany
[9] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Div Transfus Med, Los Angeles, CA 90024 USA
[10] Univ Vermont, Med Ctr, Burlington, VT 05405 USA
[11] Mem Blood Ctr, St Paul, MN USA
[12] Oxford Univ Hosp NHS Fdn Trust, Oxford, England
[13] John Radcliffe Hosp, Oxford, England
[14] Brigham & Womens Hosp, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
TS26-MN3-2
引用
收藏
页码:18A / 18A
页数:1
相关论文
共 50 条
  • [21] A Machine Learning Model for the Routine Detection of "Wrong Blood in Complete Blood Count Tube" Errors
    Farrell, Christopher-John
    Makuni, Charles
    Keenan, Aaron
    Maeder, Ellena
    Davies, Gareth
    Giannoutsos, John
    CLINICAL CHEMISTRY, 2023, 69 (09) : 1031 - 1037
  • [22] Direct Identification of Bacteria in Blood Culture Samples Using an Electronic Nose
    Trincavelli, Marco
    Coradeschi, Silvia
    Loutfi, Amy
    Soderquist, Bo
    Thunberg, Per
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (12) : 2884 - 2890
  • [23] Improved Information Regarding Wrong Blood in Tube (WBIT) Errors: Impact on Error Rates
    Igo, K.
    McGrath, C.
    Figueroa, P. I.
    TRANSFUSION, 2013, 53 : 266A - 267A
  • [24] Association of Display of Patient Photographs in the Electronic Health Record With Wrong-Patient Order Entry Errors
    Salmasian, Hojjat
    Blanchfield, Bonnie B.
    Joyce, Kelley
    Centeio, Kaila
    Schiff, Gordon B.
    Wright, Adam
    Baugh, Christopher W.
    Schuur, Jeremiah D.
    Bates, David W.
    Adelman, Jason S.
    Landman, Adam B.
    JAMA NETWORK OPEN, 2020, 3 (11)
  • [25] Addressing the identity crisis in healthcare: positive patient identification technology reduces wrong patient events
    Callum, Jeannie
    Etchells, Edward
    Shojania, Kaveh
    TRANSFUSION, 2019, 59 (03) : 899 - 902
  • [26] A Multianalyte Machine Learning Model to Detect Wrong Blood in Complete Blood Count Tube Errors in a Pediatric Setting
    Graham, Brendan, V
    Master, Stephen R.
    Obstfeld, Amrom E.
    Wilson, Robert B.
    CLINICAL CHEMISTRY, 2025, 71 (03) : 418 - 427
  • [27] Improved Detection of Wrong Blood in Tube Errors: Implementation of a Two-Sample Blood Type Verification Process
    King, Ariana
    Zibrat, Steven
    Wool, Geoffrey
    Treml, Angela
    TRANSFUSION, 2017, 57 : 253A - 253A
  • [28] Factors associated with wrong blood in tube errors: An international case series - The BEST collaborative study
    Dunbar, Nancy M.
    Kaufman, Richard M.
    TRANSFUSION, 2022, 62 (01) : 44 - 50
  • [29] Use of the medical event reporting system to track sample labeling errors and wrong blood in tube
    MacDonald, A.
    Boychuk, D.
    Webert, K.
    TRANSFUSION, 2008, 48 (02) : 290A - 290A
  • [30] Preventing Wrong-Compatibility-Tag Errors by Using An Electronic Verification Process
    Igo, K.
    Igo, R. P.
    Asamoto, K.
    Sarvay, C.
    Figueroa, P. I.
    TRANSFUSION, 2015, 55 : 224A - 224A