Solution Theory of Ginzburg-Landau Theory on BCS-BEC Crossover

被引:1
|
作者
Chen, Shuhong [1 ]
Tan, Zhong [2 ]
机构
[1] Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR-WAVE-EQUATIONS; LINEAR SCHRODINGER-EQUATIONS; CLASSICAL-SOLUTIONS; LP-ESTIMATIONS; SUPERCONDUCTIVITY;
D O I
10.1155/2014/215672
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish strong solution theory of time-dependentGinzburg-Landau (TDGL) systems on BCS-BEC crossover. By the properties of Besov, Sobolev spaces, and Fourier functions and the method of bootstrapping argument, we deduce that the global existence of strong solutions to time-dependent Ginzburg-Landau systems on BCS-BEC crossover in various spatial dimensions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Thermodynamics of the BCS-BEC crossover
    Haussmann, R.
    Rantner, W.
    Cerrito, S.
    Zwerger, W.
    [J]. PHYSICAL REVIEW A, 2007, 75 (02):
  • [22] Hopf bifurcations of traveling wave solutions for time-dependent Ginzburg-Landau equation for atomic Fermi gases near the BCS-BEC crossover
    Guan Jinlan
    Fang Shaomei
    Wang Xia
    Guo Changhong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (01) : 124 - 135
  • [23] BCS-BEC crossover in nuclear matter with the relativistic Hartree-Bogoliubov theory
    Sun, Ting Ting
    Sun, Bao Yuan
    Meng, Jie
    [J]. PHYSICAL REVIEW C, 2012, 86 (01):
  • [24] Ginzburg-Landau theory of a supersolid
    Ye, Jinwu
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [25] Sound modes at the BCS-BEC crossover
    Heiselberg, H
    [J]. PHYSICAL REVIEW A, 2006, 73 (01):
  • [26] Flow equations for the BCS-BEC crossover
    Diehl, S.
    Gies, H.
    Pawlowski, J. M.
    Wetterich, C.
    [J]. PHYSICAL REVIEW A, 2007, 76 (02)
  • [27] The Ginzburg-Landau theory in application
    Milosevic, M. V.
    Geurts, R.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (19): : 791 - 795
  • [28] GINZBURG-LANDAU THEORY FOR SUPERCONDUCTORS
    CYROT, M
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1973, 36 (02) : 103 - 158
  • [29] Solution of the anisotropic Ginzburg-Landau theory by the iterative method
    de Oliveira, IG
    Doria, MM
    Brandt, EH
    [J]. PHYSICA C, 2000, 341 : 1069 - 1070
  • [30] INTERMITTENCY IN THE GINZBURG-LANDAU THEORY
    HWA, RC
    PAN, J
    [J]. PHYSICS LETTERS B, 1992, 297 (1-2) : 35 - 38