Automatic Analysis of Large-scale Nanopore Data Using Hidden Markov Models

被引:0
|
作者
Zhang, Jianhua [1 ]
Liu, Xiuling [2 ]
机构
[1] Oslo Metropolitan Univ, Dept Comp Sci, N-0166 Oslo, Norway
[2] East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Nanopore; Time series analysis; Hidden Markov model; Viterbi algorithm; Fuzzy c-means clustering algorithm; FUZZY C-MEANS; K-MEANS; REAL-TIME; ALGORITHM;
D O I
10.1016/j.ifacol.2020.12.1138
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we developed a modified Hidden Markov Model (HMM) to analyze the raw nanopore experimental data. Traditionally, prior to further analysis the measured nanopore data must be pre-filtered, but the filtering usually distorts the waveform of the blockage current, especially for rapid translocations and bumping blockages. The HMM is known to be robust with respect to strong noise and thus suitable for processing the raw nanopore data, but its performance is susceptible to the setting of initial parameters. To overcome this problem, we use the Fuzzy c-Means (FCM) algorithm to initialize the HMM parameters in this work. Then we use the Viterbi training algorithm to optimize the HMM. Finally, both the simulated and experimental data analysis results are presented to show the effectiveness of the proposed method for detection of the nanopore current blockage events in analytical chemistry. Copyright (C) 2020 The Authors.
引用
收藏
页码:16759 / 16766
页数:8
相关论文
共 50 条
  • [41] Sparse kernel spectral clustering models for large-scale data analysis
    Alzate, Carlos
    Suykens, Johan A. K.
    NEUROCOMPUTING, 2011, 74 (09) : 1382 - 1390
  • [42] Analysis of swallowing sounds using hidden Markov models
    Mohammad Aboofazeli
    Zahra Moussavi
    Medical & Biological Engineering & Computing, 2008, 46 : 307 - 314
  • [43] Music analysis using hidden Markov mixture models
    Qi, Yuting
    Paisley, John William.
    Carin, Lawrence
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (11) : 5209 - 5224
  • [44] Tor traffic analysis using Hidden Markov Models
    Zhioua, Sami
    SECURITY AND COMMUNICATION NETWORKS, 2013, 6 (09) : 1075 - 1086
  • [45] Speech defect analysis using Hidden Markov Models
    Chaloupka, Zdenek
    Uhlir, Jan
    RADIOENGINEERING, 2007, 16 (01) : 67 - 72
  • [46] Analysis of swallowing sounds using hidden Markov models
    Aboofazeli, Mohammad
    Moussavi, Zahra
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (04) : 307 - 314
  • [47] Imputation of Incomplete Motion Data Using Hidden Markov Models
    Uvarov, V. E.
    Popov, A. A.
    Gultyaeva, T. A.
    XII INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE APPLIED MECHANICS AND SYSTEMS DYNAMICS, 2019, 1210
  • [48] Monitoring epidemiologic surveillance data using hidden Markov models
    Le Strat, Y
    Carrat, F
    STATISTICS IN MEDICINE, 1999, 18 (24) : 3463 - 3478
  • [49] TEMPORAL ANALYSIS OF MULTISENSOR DATA FOR FOREST CHANGE DETECTION USING HIDDEN MARKOV MODELS
    Salberg, Arnt-Borre
    Trier, Oivind Due
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6749 - 6752
  • [50] Data Stream Prediction Using Incremental Hidden Markov Models
    Wakabayashi, Kei
    Miura, Takao
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2009, 5691 : 63 - 74