Automatic Analysis of Large-scale Nanopore Data Using Hidden Markov Models

被引:0
|
作者
Zhang, Jianhua [1 ]
Liu, Xiuling [2 ]
机构
[1] Oslo Metropolitan Univ, Dept Comp Sci, N-0166 Oslo, Norway
[2] East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Nanopore; Time series analysis; Hidden Markov model; Viterbi algorithm; Fuzzy c-means clustering algorithm; FUZZY C-MEANS; K-MEANS; REAL-TIME; ALGORITHM;
D O I
10.1016/j.ifacol.2020.12.1138
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we developed a modified Hidden Markov Model (HMM) to analyze the raw nanopore experimental data. Traditionally, prior to further analysis the measured nanopore data must be pre-filtered, but the filtering usually distorts the waveform of the blockage current, especially for rapid translocations and bumping blockages. The HMM is known to be robust with respect to strong noise and thus suitable for processing the raw nanopore data, but its performance is susceptible to the setting of initial parameters. To overcome this problem, we use the Fuzzy c-Means (FCM) algorithm to initialize the HMM parameters in this work. Then we use the Viterbi training algorithm to optimize the HMM. Finally, both the simulated and experimental data analysis results are presented to show the effectiveness of the proposed method for detection of the nanopore current blockage events in analytical chemistry. Copyright (C) 2020 The Authors.
引用
收藏
页码:16759 / 16766
页数:8
相关论文
共 50 条
  • [31] Automatic estimation of differential evolution parameters using Hidden Markov Models
    Keshk M.
    Singh H.
    Abbass H.
    Evolutionary Intelligence, 2018, 10 (3-4) : 77 - 93
  • [32] Automatic segmentation of infant cry signals using hidden Markov models
    Gaurav Naithani
    Jaana Kivinummi
    Tuomas Virtanen
    Outi Tammela
    Mikko J. Peltola
    Jukka M. Leppänen
    EURASIP Journal on Audio, Speech, and Music Processing, 2018
  • [33] Automatic segmentation of acoustic musical signals using hidden Markov models
    Raphael, C
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (04) : 360 - 370
  • [34] Automatic segmentation of heart sound signals using Hidden Markov Models
    Ricke, AD
    Povinelli, RJ
    Johnson, MT
    Computers in Cardiology 2005, Vol 32, 2005, 32 : 953 - 956
  • [35] Automatic segmentation of acoustic musical signals using hidden Markov models
    Department of Mathematics and Statistics, University of Massachusetts at Amtierst, Amherst, MA 01003, United States
    IEEE Trans Pattern Anal Mach Intell, 4 (360-370):
  • [36] Automatic segmentation of infant cry signals using hidden Markov models
    Naithani, Gaurav
    Kivinummi, Jaana
    Virtanen, Tuomas
    Tammela, Outi
    Peltola, Mikko J.
    Leppanen, Jukka M.
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2018,
  • [37] Queue congestion prediction for large-scale high performance computing systems using a hidden Markov model
    Ju-Won Park
    Min-Woo Kwon
    Taeyoung Hong
    The Journal of Supercomputing, 2022, 78 : 12202 - 12223
  • [38] Queue congestion prediction for large-scale high performance computing systems using a hidden Markov model
    Park, Ju-Won
    Kwon, Min-Woo
    Hong, Taeyoung
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (10): : 12202 - 12223
  • [39] Cardiovascular Risk Models Using Large-Scale Physical Examination Data
    Fei, Jintao
    Ding, Shuhan
    Li, Minghui
    Yuan, Yifang
    Luo, Jiangying
    Wang, Guoxin
    Zhao, Jun
    Cao, Xuyang
    Gao, Minyu
    Yao, Yang
    Zhang, Ping
    Xu, Zhaoji
    Liu, Mingxue
    Wu, Xinyue
    Wang, Ding
    CIRCULATION, 2024, 150
  • [40] Scalable Algorithms for Bayesian Inference of Large-Scale Models from Large-Scale Data
    Ghattas, Omar
    Isaac, Tobin
    Petra, Noemi
    Stadler, Georg
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2016, 2017, 10150 : 3 - 6