Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire

被引:132
|
作者
Emanetoglu, NW [1 ]
Zhu, J [1 ]
Chen, Y [1 ]
Zhong, J [1 ]
Chen, YM [1 ]
Lu, YC [1 ]
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1811383
中图分类号
O59 [应用物理学];
学科分类号
摘要
A surface acoustic wave (SAW) ultraviolet (UV) photodetector is made of a zinc oxide (ZnO) based epitaxial multilayer structure on an r-plane sapphire (r-Al2O3) substrate. Piezoelectric and semiconducting ZnO layers are used for SAW excitation and photodetection, respectively. A thin Mg0.2Zn0.8O layer grown between the two ZnO layers isolates the semiconducting layer from the piezoelectric one. In contrast to previously reported SAW UV detectors on GaN and LiNbO3, the Sezawa SAW mode in the ZnO/r-Al2O3 system is used for its high acoustic velocity and large maximum effective piezoelectric coupling constant. The interaction of the SAW with the photogenerated carriers in the semiconducting ZnO layer results in a phase shift and an insertion loss change, as functions of light wavelength and power. The ZnO SAW UV detector can be used as a passive zero-power remote wireless UV sensor. (C) 2004 American Institute of Physics.
引用
收藏
页码:3702 / 3704
页数:3
相关论文
共 50 条
  • [21] Lateral epitaxial overgrowth of fully coalesced a-plane GaN on r-plane sapphire
    Chen, CQ
    Yang, JW
    Wang, HM
    Zhang, JP
    Adivarahan, V
    Gaevski, M
    Kuokstis, E
    Gong, Z
    Su, M
    Khan, MA
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2003, 42 (6B): : L640 - L642
  • [22] Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer
    Liu, H. F.
    Liu, W.
    Guo, S.
    Chi, D. Z.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (08)
  • [23] Lateral epitaxial overgrowth of fully coalesced a-plane GaN on r-plane sapphire
    Chen, Changqing
    Yang, Jinwei
    Wang, Hongmei
    Zhang, Jianping
    Adivarahan, Vinod
    Gaevski, Mikhail
    Kuokstis, Edmundas
    Gong, Zheng
    Su, Ming
    Khan, Muhammad Asif
    [J]. Japanese Journal of Applied Physics, Part 2: Letters, 2003, 42 (6 B):
  • [24] Epitaxial growth, electrical and optical properties of a-plane InN on r-plane sapphire
    Ajagunna, A. O.
    Iliopoulos, E.
    Tsiakatouras, G.
    Tsagaraki, K.
    Androulidaki, M.
    Georgakilas, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (02)
  • [25] Improved a-plane GaN quality grown with flow modulation epitaxy and epitaxial lateral overgrowth on r-plane sapphire substrate
    Huang, Jeng-Jie
    Shen, Kun-Ching
    Shiao, Wen-Yu
    Chen, Yung-Sheng
    Liu, Tzu-Chi
    Tang, Tsung-Yi
    Huang, Chi-Feng
    Yanga, C. C.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (23)
  • [26] Anisotropy of elastic strains and specific features of the defect structure of a-plane GaN epitaxial films grown on r-plane sapphire
    R. N. Kyutt
    M. P. Shcheglov
    V. V. Ratnikov
    A. E. Nikolaev
    [J]. Physics of the Solid State, 2009, 51 : 1789 - 1795
  • [27] High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire
    Wraback, M
    Shen, H
    Liang, S
    Goria, CR
    Lu, Y
    [J]. APPLIED PHYSICS LETTERS, 1999, 74 (04) : 507 - 509
  • [28] EPITAXIAL GROWTH OF NON-POLAR A-PLANE ZNO ON R-PLANE SAPPHIRE SUBSTRATES BY MOCVD AND RF-SPUTTERING
    Chen, Hou-Guang
    Chen, Guo-Ju
    Jian, Sheng-Rui
    Huang, Gou-Zhi
    Ni, Jhih-Wei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (6-7): : 1154 - 1159
  • [29] Epitaxial Fe3O4 Films Grown on R-Plane Sapphire by Pulsed Laser Deposition
    Malikov, I. V.
    Berezin, V. A.
    Fomin, L. A.
    Chernykh, A. V.
    [J]. INORGANIC MATERIALS, 2020, 56 (02) : 164 - 171
  • [30] Epitaxial Fe3O4 Films Grown on R-Plane Sapphire by Pulsed Laser Deposition
    I. V. Malikov
    V. A. Berezin
    L. A. Fomin
    A. V. Chernykh
    [J]. Inorganic Materials, 2020, 56 : 164 - 171