A Probabilistic Framework for Learning Robust Common Spatial Patterns

被引:9
|
作者
Wu, Wei [1 ,2 ,3 ]
Chen, Zhe [1 ,3 ]
Gao, Shangkai [2 ]
Brown, Emery N. [1 ,3 ]
机构
[1] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[2] Tsinghua Univ, Dept Biomed Engn, Beijing 100084, Peoples R China
[3] Massachusetts Gen Hosp, Harward Med Sch, Neurosci Stat Res Lab, Boston, MA 02114 USA
基金
中国国家自然科学基金;
关键词
FILTERS; EEG;
D O I
10.1109/IEMBS.2009.5332646
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Robustness in signal processing is crucial for the purpose of reliably interpreting physiological features from noisy data in biomedical applications. We present a robust algorithm based on the reformulation of a well-known spatial filtering and feature extraction algorithm named Common Spatial Patterns (CSP). We cast the problem of learning CSP into a probabilistic framework, which allows us to gain insights into the algorithm. To address the overfitting problem inherent in CSP, we propose an expectation-maximization (EM) algorithm for learning robust CSP using from a Student-t distribution. The efficacy of the proposed robust algorithm is validated with both simulated and real EEG data.
引用
收藏
页码:4658 / +
页数:2
相关论文
共 50 条
  • [41] Probabilistic associative learning of vessel motion patterns at multiple spatial scales for maritime situation awareness
    Rhodes, Bradley J.
    Bomberger, Neil A.
    Zandipour, Majid
    2007 PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2007, : 1203 - 1210
  • [42] Divergent Common Spatial Patterns Method
    Duman, Mecit Emre
    Yuksel, Ayhan
    Olmez, Tamer
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 612 - 615
  • [43] Multiset bisimulations as a common framework for ordinary and probabilistic bisimulations
    Escrig, David de Frutos
    Palomino, Miguel
    Fabregas, Ignacio
    FORMAL TECHNIQUES FOR NETWORKED AND DISTRIBUTED SYSTEMS - FORTE 2008, 2008, 5048 : 283 - 298
  • [44] Multiset bisimulations as a common framework for ordinary and probabilistic bisimulations
    de Frutos Escrig, David
    Palomino, Miguel
    Fábregas, Ignacio
    arXiv,
  • [45] Adaptation and Robust Learning of Probabilistic Movement Primitives
    Gomez-Gonzalez, Sebastian
    Neumann, Gerhard
    Schoelkopf, Bernhard
    Peters, Jan
    IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (02) : 366 - 379
  • [46] Learning Probabilistic Coordinate Fields for Robust Correspondences
    Zhao W.
    Lu H.
    Ye X.
    Cao Z.
    Li X.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 12004 - 12021
  • [47] Robust Common Spatial filters with a Maxmin Approach
    Kawanabe, Motoaki
    Vidaurre, Carmen
    Scholler, Simon
    Mueller, Klaus-Robert
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 2470 - +
  • [48] Robust Common Spatial Filters with a Maxmin Approach
    Kawanabe, Motoaki
    Samek, Wojciech
    Mueller, Klaus-Robert
    Vidaurre, Carmen
    NEURAL COMPUTATION, 2014, 26 (02) : 349 - 376
  • [49] Spatial patterns and processes in a longitudinal framework
    Waldorf, B
    INTERNATIONAL REGIONAL SCIENCE REVIEW, 2003, 26 (03) : 269 - 288
  • [50] A probabilistic framework for stability assessment of existing spatial structures
    Liu, Jun
    Luo, Yongfeng
    Wang, Li
    Yang, Xu
    Li, Yunsong
    Guo, Xiaonong
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2019, 156 : 96 - 104