A Probabilistic Framework for Learning Robust Common Spatial Patterns

被引:9
|
作者
Wu, Wei [1 ,2 ,3 ]
Chen, Zhe [1 ,3 ]
Gao, Shangkai [2 ]
Brown, Emery N. [1 ,3 ]
机构
[1] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[2] Tsinghua Univ, Dept Biomed Engn, Beijing 100084, Peoples R China
[3] Massachusetts Gen Hosp, Harward Med Sch, Neurosci Stat Res Lab, Boston, MA 02114 USA
基金
中国国家自然科学基金;
关键词
FILTERS; EEG;
D O I
10.1109/IEMBS.2009.5332646
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Robustness in signal processing is crucial for the purpose of reliably interpreting physiological features from noisy data in biomedical applications. We present a robust algorithm based on the reformulation of a well-known spatial filtering and feature extraction algorithm named Common Spatial Patterns (CSP). We cast the problem of learning CSP into a probabilistic framework, which allows us to gain insights into the algorithm. To address the overfitting problem inherent in CSP, we propose an expectation-maximization (EM) algorithm for learning robust CSP using from a Student-t distribution. The efficacy of the proposed robust algorithm is validated with both simulated and real EEG data.
引用
收藏
页码:4658 / +
页数:2
相关论文
共 50 条
  • [21] Unsupervised Common Spatial Patterns
    Martin-Clemente, Ruben
    Olias, Javier
    Cruces, Sergio
    Zarzoso, Vicente
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2135 - 2144
  • [22] Bayesian Common Spatial Patterns
    Kang, Hyohyeong
    Choi, Seungjin
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 3 - 5
  • [23] Robust Learning of Tractable Probabilistic Models
    Peddi, Rohith
    Rahman, Tahrima
    Gogate, Vibhav
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1572 - 1581
  • [24] Possible semantics for a common framework of probabilistic logics
    Haenni, Rolf
    Romeijn, Jan-Willem
    Wheeler, Gregory
    Williamson, Jon
    INTERVAL / PROBABILISTIC UNCERTAINTY AND NON-CLASSICAL LOGICS, 2008, 46 : 268 - +
  • [25] A robust Bayesian Multi-Machine learning ensemble framework for probabilistic groundwater level forecasting
    Zhu, Feilin
    Sun, Yimeng
    Han, Mingyu
    Hou, Tiantian
    Zeng, Yurou
    Lin, Meiyan
    Wang, Yaqin
    Zhong, Ping-an
    JOURNAL OF HYDROLOGY, 2025, 650
  • [26] Incremental Versus Non-incremental Learning in Adaptive Common Spatial Patterns
    Song, Xiaomu
    Yoon, Suk-Chung
    2015 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2015,
  • [27] Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification
    Miao, Yangyang
    Jin, Jing
    Daly, Ian
    Zuo, Cili
    Wang, Xingyu
    Cichocki, Andrzej
    Jung, Tzyy-Ping
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 699 - 707
  • [28] ROBUST COMMON SPATIAL PATTERNS ESTIMATION USING DYNAMIC TIME WARPING TO IMPROVE BCI SYSTEMS
    Azab, Ahmed M.
    Mihaylova, Lyudmila
    Ahmadi, Hamed
    Arvaneh, Mahnaz
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3897 - 3901
  • [29] STATIONARY COMMON SPATIAL PATTERNS: TOWARDS ROBUST CLASSIFICATION OF NON-STATIONARY EEG SIGNALS
    Wojcikiewicz, Wojciech
    Vidaurre, Carmen
    Kawanabe, Motoaki
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 577 - 580
  • [30] A Framework for Robust Cognitive Spatial Mapping
    Pronobis, Andrzej
    Sjoo, Kristoffer
    Aydemir, Alper
    Bishop, Adrian N.
    Jensfelt, Patric
    ICAR: 2009 14TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, VOLS 1 AND 2, 2009, : 686 - 693