An explicit construction of a reproducing Gaussian kernel Hilbert space

被引:0
|
作者
Xu, Jian-Wu [1 ]
Pokharel, Puskal P. [1 ]
Jeong, Kyu-Hwa [1 ]
Principe, Jose C. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we propose a method to explicitly construct a reproducing kernel Hilbert space (RKHS) associated with a Gaussian kernel by means of polynomial spaces. In contrast to the conventional Mercer's theorem approach that implicitly defines kernels by an eigendecomposition, the functionals in this reproducing kernel Hilbert space are explicitly constructed and are not necessary orthonormal. We also point out an intriguing connection between this reproducing kernel Hilbert space and a generalized Fock space. We give an experimental result on approximation of the constructed kernel to a Gaussian kernel.
引用
收藏
页码:5431 / 5434
页数:4
相关论文
共 50 条
  • [21] On some problems for operators on the reproducing kernel Hilbert space
    Garayev, M. T.
    Guediri, H.
    Gurdal, M.
    Alsahli, G. M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2059 - 2077
  • [22] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [23] A New Application Of Reproducing Kernel Hilbert Space Method
    Akgul, A.
    Sakar, M. Giyas
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [24] A Reproducing Kernel Hilbert Space Framework for Functional Classification
    Sang, Peijun
    Kashlak, Adam B.
    Kong, Linglong
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1000 - 1008
  • [25] Hyperellipsoidal Statistical Classifications in a Reproducing Kernel Hilbert Space
    Liang, Xun
    Ni, Zhihao
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 968 - 975
  • [26] A reproducing kernel Hilbert space approach for speech enhancement
    Gauci, Oliver
    Debono, Carl J.
    Micallef, Paul
    [J]. 2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 831 - 835
  • [27] Modelling Policies in MDPs in Reproducing Kernel Hilbert Space
    Lever, Guy
    Stafford, Ronnie
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 590 - 598
  • [28] Generalized Mahalanobis depth in the reproducing kernel Hilbert space
    Yonggang Hu
    Yong Wang
    Yi Wu
    Qiang Li
    Chenping Hou
    [J]. Statistical Papers, 2011, 52 : 511 - 522
  • [29] Step size adaptation in reproducing kernel Hilbert space
    Vishwanathan, S. V. N.
    Schraudolph, Nicol N.
    Smola, Alex J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1107 - 1133
  • [30] THE REPRODUCING KERNEL HILBERT SPACE BASED ON WAVELET TRANSFORM
    Deng, Cai-Xia
    Li, Shuai
    Fu, Zuo-Xian
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 370 - 374