CONTEXT-AWARE HIERARCHICAL FEATURE ATTENTION NETWORK FOR MULTI-SCALE OBJECT DETECTION

被引:0
|
作者
Xu, Xuelong [1 ]
Luo, Xiangfeng [1 ,2 ]
Ma, Liyan [1 ,2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] Shanghai Inst Adv Commun & Data Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Feature selection; Attention mechanism;
D O I
10.1109/icip40778.2020.9190896
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Multi-scale object detection involves classification and regression assignments of objects with variable scales from an image. How to extract discriminative features is a key point for multi-scale object detection. Recent detectors simply fuse pyramidal features extracted from ConvNets, which does not take full advantage of useful features and drop out redundant features. To address this problem, we propose Context-Aware Hierarchical Feature Attention Network (CHFANet) to focus on effective multi-scale feature extraction for object detection. Based on single shot multibox detector (SSD) framework, the CHFANet consists of two components: the context-aware feature extraction (CFE) module to capture rich multi-scale context features and the hierarchical feature fusion (HFF) module followed with the channel-wise attention model to generate deeply fused attentive features. On the Pascal VOC benchmark, our CHFANet can achieve 82.6% mAP. Extensive experiments demonstrate that the CHFANet outperforms a lot of state-of-the-art object detectors in accuracy without any bells and whistles.
引用
收藏
页码:2011 / 2015
页数:5
相关论文
共 50 条
  • [41] Multi-Scale Object Detection Using Feature Fusion Recalibration Network
    Guo, Ziyuan
    Zhang, Weimin
    Liang, Zhenshuo
    Shi, Yongliang
    Huang, Qiang
    [J]. IEEE ACCESS, 2020, 8 : 51664 - 51673
  • [42] MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK
    Guan, Wenjie
    Zou, YueXian
    Zhou, Xiaoqun
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2596 - 2600
  • [43] Feature Enhancement for Multi-scale Object Detection
    Huicheng Zheng
    Jiajie Chen
    Lvran Chen
    Ye Li
    Zhiwei Yan
    [J]. Neural Processing Letters, 2020, 51 : 1907 - 1919
  • [44] Feature Enhancement for Multi-scale Object Detection
    Zheng, Huicheng
    Chen, Jiajie
    Chen, Lvran
    Li, Ye
    Yan, Zhiwei
    [J]. NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1907 - 1919
  • [45] MULTI-SCALE CONTEXT-AWARE R-CNN FOR FEW-SHOT OBJECT DETECTION IN REMOTE SENSING IMAGES
    Su, Haozheng
    You, Yanan
    Meng, Gang
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1908 - 1911
  • [46] MSCAF-Net: A General Framework for Camouflaged Object Detection via Learning Multi-Scale Context-Aware Features
    Liu, Yu
    Li, Haihang
    Cheng, Juan
    Chen, Xun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4934 - 4947
  • [47] Global context-aware feature modulation networks for unified multi-scale super-resolution
    Zhang, Dacheng
    Lei, Weimin
    Zhang, Wei
    Chen, Xinyi
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (03)
  • [48] A Scale-Aware Pyramid Network for Multi-Scale Object Detection in SAR Images
    Tang, Linbo
    Tang, Wei
    Qu, Xin
    Han, Yuqi
    Wang, Wenzheng
    Zhao, Baojun
    [J]. REMOTE SENSING, 2022, 14 (04)
  • [49] LGCNet: A local-to-global context-aware feature augmentation network for salient object detection
    Ji, Yuzhu
    Zhang, Haijun
    Gao, Feng
    Sun, Haofei
    Wei, Haokun
    Wang, Nan
    Yang, Biao
    [J]. INFORMATION SCIENCES, 2022, 584 : 399 - 416
  • [50] LGCNet: A local-to-global context-aware feature augmentation network for salient object detection
    Ji, Yuzhu
    Zhang, Haijun
    Gao, Feng
    Sun, Haofei
    Wei, Haokun
    Wang, Nan
    Yang, Biao
    [J]. Information Sciences, 2022, 584 : 399 - 416