CONTEXT-AWARE HIERARCHICAL FEATURE ATTENTION NETWORK FOR MULTI-SCALE OBJECT DETECTION

被引:0
|
作者
Xu, Xuelong [1 ]
Luo, Xiangfeng [1 ,2 ]
Ma, Liyan [1 ,2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] Shanghai Inst Adv Commun & Data Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Feature selection; Attention mechanism;
D O I
10.1109/icip40778.2020.9190896
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Multi-scale object detection involves classification and regression assignments of objects with variable scales from an image. How to extract discriminative features is a key point for multi-scale object detection. Recent detectors simply fuse pyramidal features extracted from ConvNets, which does not take full advantage of useful features and drop out redundant features. To address this problem, we propose Context-Aware Hierarchical Feature Attention Network (CHFANet) to focus on effective multi-scale feature extraction for object detection. Based on single shot multibox detector (SSD) framework, the CHFANet consists of two components: the context-aware feature extraction (CFE) module to capture rich multi-scale context features and the hierarchical feature fusion (HFF) module followed with the channel-wise attention model to generate deeply fused attentive features. On the Pascal VOC benchmark, our CHFANet can achieve 82.6% mAP. Extensive experiments demonstrate that the CHFANet outperforms a lot of state-of-the-art object detectors in accuracy without any bells and whistles.
引用
收藏
页码:2011 / 2015
页数:5
相关论文
共 50 条
  • [21] Hierarchical Feature Fusion With Text Attention For Multi-scale Text Detection
    Liu, Chao
    Zou, Yuexian
    Guan, Wenjie
    [J]. 2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [22] Multi-Scale Feature Selective Matching Network for Object Detection
    Pei, Yuanhua
    Dong, Yongsheng
    Zheng, Lintao
    Ma, Jinwen
    [J]. MATHEMATICS, 2023, 11 (12)
  • [23] Small Object Detection using Multi-scale Feature Fusion and Attention
    Liu, Baokai
    Du, Shiqiang
    Li, Jiacheng
    Wang, Jianhua
    Liu, Wenjie
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7246 - 7251
  • [24] Multi-scale global context feature pyramid network for object detector
    Yunhao Li
    Mingwen Shao
    Bingbing Fan
    Wei Zhang
    [J]. Signal, Image and Video Processing, 2022, 16 : 705 - 713
  • [25] Multi-Exposure Image Fusion via Multi-Scale and Context-Aware Feature Learning
    Liu, Yu
    Yang, Zhigang
    Cheng, Juan
    Chen, Xun
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 100 - 104
  • [26] Multi-scale global context feature pyramid network for object detector
    Li, Yunhao
    Shao, Mingwen
    Fan, Bingbing
    Zhang, Wei
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (03) : 705 - 713
  • [27] Context-aware knowledge distillation network for object detection
    Chu, Jing-Hui
    Shi, Li-Dong
    Jing, Pei-Guang
    Lv, Wei
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 503 - 509
  • [28] Spatial context-aware network for salient object detection
    Kong, Yuqiu
    Feng, Mengyang
    Li, Xin
    Lu, Huchuan
    Liu, Xiuping
    Yin, Baocai
    [J]. PATTERN RECOGNITION, 2021, 114
  • [29] Discriminative context-aware network for camouflaged object detection
    Ike, Chidiebere Somadina
    Muhammad, Nazeer
    Bibi, Nargis
    Alhazmi, Samah
    Eoghan, Furey
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [30] Small object detection based on hierarchical attention mechanism and multi-scale separable detection
    Zhang, Yafeng
    Yu, Junyang
    Wang, Yuanyuan
    Tang, Shuang
    Li, Han
    Xin, Zhiyi
    Wang, Chaoyi
    Zhao, Ziming
    [J]. IET IMAGE PROCESSING, 2023, 17 (14) : 3986 - 3999