Division Algebras with Left Algebraic Commutators

被引:5
|
作者
Aaghabali, M. [1 ]
Akbari, S. [2 ]
Bien, M. H. [3 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Sharif Univ Technol, Dept Math Sci, POB 11155-9415, Tehran, Iran
[3] Univ Sci, Fac Math & Comp Sci, VNU HCM, 227 Nguyen Van Cu Str,Dist 5, Hcm City, Vietnam
关键词
Division algebra; Commutators; Laurent polynomial identity; Maximal subfield; Left algebraic; RINGS;
D O I
10.1007/s10468-017-9739-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a division algebra with center F and K a (not necessarily central) subfield of D. An element a a D is called left algebraic (resp. right algebraic) over K, if there exists a non-zero left polynomial a (0) + a (1) x + ai + a (n) x (n) (resp. right polynomial a (0) + x a (1) + ai + x (n) a (n) ) over K such that a (0) + a (1) a + ai + a (n) a (n) = 0 (resp. a (0) + a a (1) + ai + a (n) a (n) ). Bell et al. proved that every division algebra whose elements are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. In this paper we generalize this result and prove that every division algebra whose all multiplicative commutators are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite provided that the center of division algebra is infinite. Also, we show that every division algebra whose multiplicative group of commutators is left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. Among other results we present similar result regarding additive commutators under certain conditions.
引用
收藏
页码:807 / 816
页数:10
相关论文
共 50 条
  • [1] Division Algebras with Left Algebraic Commutators
    M. Aaghabali
    S. Akbari
    M. H. Bien
    Algebras and Representation Theory, 2018, 21 : 807 - 816
  • [2] On division rings with algebraic commutators of bounded degree
    Chebotar, MA
    Fong, Y
    Lee, PH
    MANUSCRIPTA MATHEMATICA, 2004, 113 (02) : 153 - 164
  • [3] On division rings with algebraic commutators of bounded degree
    M.A. Chebotar
    Yuen Fong
    Pjek-Hwee Lee
    manuscripta mathematica, 2004, 113 : 153 - 164
  • [4] Valuations on Algebraic Division Algebras
    Fallah-Moghaddam, R.
    Mahdavi-Hezavehi, M.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1207 - 1211
  • [5] Algebraic commutators with respect to subnormal subgroups in division rings
    M. H. Bien
    B. X. Hai
    V. M. Trang
    Acta Mathematica Hungarica, 2021, 163 : 663 - 681
  • [6] ALGEBRAIC COMMUTATORS WITH RESPECT TO SUBNORMAL SUBGROUPS IN DIVISION RINGS
    Bien, M. H.
    Hai, B. X.
    Trang, V. M.
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 663 - 681
  • [7] Decompositions of matrices over division algebras into products of commutators
    Mai Hoang Bien
    Truong Huu Dung
    Nguyen Thi Thai Ha
    Tran Nam Son
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 646 : 119 - 131
  • [8] Left artinian algebraic algebras
    Akbari, S
    Arian-Nejad, M
    ALGEBRA COLLOQUIUM, 2001, 8 (04) : 463 - 470
  • [9] EXTENDING VALUATIONS TO ALGEBRAIC DIVISION-ALGEBRAS
    MAHDAVIHEZAVEHI, M
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (11) : 4373 - 4378
  • [10] A sum-product estimate in algebraic division algebras
    Chang, Mei-Chu
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 150 (1) : 369 - 380