Division Algebras with Left Algebraic Commutators

被引:5
|
作者
Aaghabali, M. [1 ]
Akbari, S. [2 ]
Bien, M. H. [3 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Sharif Univ Technol, Dept Math Sci, POB 11155-9415, Tehran, Iran
[3] Univ Sci, Fac Math & Comp Sci, VNU HCM, 227 Nguyen Van Cu Str,Dist 5, Hcm City, Vietnam
关键词
Division algebra; Commutators; Laurent polynomial identity; Maximal subfield; Left algebraic; RINGS;
D O I
10.1007/s10468-017-9739-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a division algebra with center F and K a (not necessarily central) subfield of D. An element a a D is called left algebraic (resp. right algebraic) over K, if there exists a non-zero left polynomial a (0) + a (1) x + ai + a (n) x (n) (resp. right polynomial a (0) + x a (1) + ai + x (n) a (n) ) over K such that a (0) + a (1) a + ai + a (n) a (n) = 0 (resp. a (0) + a a (1) + ai + a (n) a (n) ). Bell et al. proved that every division algebra whose elements are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. In this paper we generalize this result and prove that every division algebra whose all multiplicative commutators are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite provided that the center of division algebra is infinite. Also, we show that every division algebra whose multiplicative group of commutators is left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. Among other results we present similar result regarding additive commutators under certain conditions.
引用
收藏
页码:807 / 816
页数:10
相关论文
共 50 条
  • [21] A determination of all normal division algebras over an algebraic number field
    Albert, A. Adrian
    Hasse, Helmut
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1932, 34 (1-4) : 722 - 726
  • [22] The algebraic and geometric classification of nilpotent left-symmetric algebras
    Adashev, Jobir
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    Sattarov, Aloberdi
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [23] Associators and Commutators in Alternative Algebras
    E. Kleinfeld
    I. P. Shestakov
    Algebra and Logic, 2019, 58 : 322 - 326
  • [24] Tripotents in Algebras: Ideals and Commutators
    Khattab Fawwaz
    Rinat Yakushev
    Lobachevskii Journal of Mathematics, 2022, 43 : 1626 - 1632
  • [25] On the combinatorics of commutators of Lie algebras
    Aramaki Hitomi, Eduardo Eizo
    Yasumura, Felipe Yukihide
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (06)
  • [26] Commutators in BCI-algebras
    Najafi, Ardavan
    Saeid, Arsham Borumand
    Eslami, Esfandiar
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 31 (01) : 357 - 366
  • [27] Associators and Commutators in Alternative Algebras
    Kleinfeld, E.
    Shestakov, I. P.
    ALGEBRA AND LOGIC, 2019, 58 (04) : 322 - 326
  • [28] MULTIPLICATIVE COMMUTATORS IN DIVISION RINGS
    PUTCHA, MS
    YAQUB, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A71 - A71
  • [29] MULTIPLICATIVE COMMUTATORS IN DIVISION RINGS
    HERSTEIN, IN
    ISRAEL JOURNAL OF MATHEMATICS, 1978, 31 (02) : 180 - 188
  • [30] Spectrum of commutators on Banach algebras
    Ouchrif S.
    Afrika Matematika, 2014, 25 (1) : 213 - 221