Steady states with unbounded mass of the Keller-Segel system

被引:15
|
作者
Pistoia, Angela [1 ]
Vaira, Giusi [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00185 Rome, Italy
关键词
PARABOLIC-ELLIPTIC SYSTEM; MODELING CHEMOTAXIS; RADIAL SOLUTIONS; POINT DYNAMICS; SINGULAR LIMIT; AGGREGATION; DIFFUSION; NONLINEARITIES; EXISTENCE; BEHAVIOR;
D O I
10.1017/S0308210513000619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary-value problem -Delta u+u = lambda e(u) in B-r0, partial derivative(nu)u = 0 on partial derivative B-r0, where B-r0 is the ball of radius ro in R-N, N >= 2, lambda > 0 and v is the outer normal derivative at partial derivative B-r0. This problem is equivalent to the stationary Keller Segel system from chemotaxis. We show the existence of a solution concentrating at the boundary of the ball as lambda goes to 0.
引用
收藏
页码:203 / 222
页数:20
相关论文
共 50 条
  • [31] Nonnegative solutions to time fractional Keller-Segel system
    Aruchamy, Akilandeeswari
    Tyagi, Jagmohan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 1812 - 1830
  • [32] A Note on the Subcritical Two Dimensional Keller-Segel System
    Carrillo, Jose A.
    Chen, Li
    Liu, Jian-Guo
    Wang, Jinhuan
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) : 43 - 55
  • [33] Uniqueness of stationary states for singular Keller-Segel type models
    Calvez, Vincent
    Carrillo, Jose Antonio
    Hoffmann, Franca
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
  • [34] Multiple positive solutions of the stationary Keller-Segel system
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Noris, Benedetta
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [35] Critical mass for Keller-Segel systems with supercritical nonlinear sensitivity
    Mao, Xuan
    Li, Yuxiang
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (11): : 2395 - 2423
  • [37] Boundedness of the attraction-repulsion Keller-Segel system
    Jin, Hai-Yang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1463 - 1478
  • [38] The fast signal diffusion limit in a Keller-Segel system
    Mizukami, Masaaki
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) : 1313 - 1330
  • [39] A Note on the Subcritical Two Dimensional Keller-Segel System
    Jose A. Carrillo
    Li Chen
    Jian-Guo Liu
    Jinhuan Wang
    [J]. Acta Applicandae Mathematicae, 2012, 119 : 43 - 55
  • [40] Time-decay Estimates for Keller-Segel System
    Zhen Bin Cao
    Xiao Feng Liu
    Meng Wang
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 666 - 674