Trotter products and reaction-diffusion equations

被引:1
|
作者
Popescu, Emil [1 ]
机构
[1] Tech Univ Civil Engn, Dept Math & Comp Sci, RO-020396 Bucharest, Romania
关键词
Reaction-diffusion equation; Product formula; Pseudodifferential operator; Feller semigroup;
D O I
10.1016/j.cam.2009.02.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of generalized diffusion-reaction equations of the form partial derivative u/partial derivative t(x, t) = (Au (., t)) (x) + f (x, u (x, t)), where A is a pseudodifferential operator which generates a Feller semigroup. Using the Trotter product formula we give a corresponding discrete time integro-difference equation for numerical solutions. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1596 / 1600
页数:5
相关论文
共 50 条
  • [31] INVARIANCE FOR STOCHASTIC REACTION-DIFFUSION EQUATIONS
    Cannarsa, Piermarco
    Da Prato, Giuseppe
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01): : 43 - 56
  • [32] Reaction-diffusion equations and ecological modeling
    Cosner, C.
    TUTORIALS IN MATHEMATICAL BIOSCIENCES IV: EVOLUTION AND ECOLOGY, 2008, 1922 : 77 - 115
  • [33] Nonlinear Nonlocal Reaction-Diffusion Equations
    Rodriguez-Bernal, Anibal
    Sastre-Gomez, Silvia
    ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 53 - 61
  • [34] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [35] IMPULSIVE QUENCHING FOR REACTION-DIFFUSION EQUATIONS
    CHAN, CY
    KE, L
    VATSALA, AS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (11) : 1323 - 1328
  • [36] Spirals in scalar reaction-diffusion equations
    Dellnitz, M
    Golubitsky, M
    Hohmann, A
    Stewart, I
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06): : 1487 - 1501
  • [37] Perturbative linearization of reaction-diffusion equations
    Puri, S
    Wiese, KJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : 2043 - 2054
  • [38] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [39] Spatially stochastic reaction in stationary Reaction-Diffusion equations
    Bellini, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (12): : 1429 - 1432
  • [40] The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates
    Leach, JA
    Needham, DJ
    Kay, AL
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 167 (3-4) : 153 - 182