MIDAS -: The Micro-Imaging Dust Analysis System for the Rosetta mission

被引:57
|
作者
Riedler, W.
Torkar, K.
Jeszenszky, H.
Romstedt, J.
Alleyne, H. St. C.
Arends, H.
Barth, W.
Biezen, J. V. D.
Butler, B.
Ehrenfreund, P.
Fehringer, M.
Fremuth, G.
Gavira, J.
Havnes, O.
Jessberger, E. K.
Kassing, R.
Kloeck, W.
Koeberl, C.
Levasseur-Regourd, A. C.
Maurette, M.
Ruedenauer, F.
Schmidt, R.
Stangl, G.
Steller, M.
Weber, I.
机构
[1] Austrian Acad Sci, Inst Weltraumforsch, A-8042 Graz, Austria
[2] European Space Agcy, Estec, Sci Directorate, NL-2200 AG Noordwijk, Netherlands
[3] ARC Seibersdorf Res GmbH, A-2444 Seibersdorf, Austria
[4] Univ Gesamthsch Kassel, Inst Tech Phys, D-34109 Kassel, Germany
[5] Univ Munster, Inst Planetol, D-48149 Munster, Germany
[6] Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands
[7] Univ Paris 06, CNRS, F-91371 Verrieres Le Buisson, France
[8] CSNSM, Astrophys Solide, F-91405 Orsay, France
[9] Univ Tromso, Auroral Observ, N-9037 Tromso, Norway
[10] Rontgenanalyt Messtech GmbH, D-65232 Taunusstein, Germany
[11] Univ Vienna, Ctr Earth Sci, A-1090 Vienna, Austria
[12] Univ Sheffield, Sheffield S1 4DU, S Yorkshire, England
[13] Vienna Univ Technol, Inst Sensor & Aktuatorsyst, A-1040 Vienna, Austria
关键词
Rosetta; atomic force microscope; comet; coma; dust; 67P/Churyumov-Gerasimenko;
D O I
10.1007/s11214-006-9040-y
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively. The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary activity and the processes in the surface layer of the nucleus and the inner coma. The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta's scientific payload. It will provide 3D images and statistical parameters of pristine cometary particles in the nm-mu m range front Comet 67P/Churyumov-Gerasimenko. According to cometary dust models and experience gained front the Giotto and Vega missions to 1P/Halley, there appears to be an abundance of particles in this size range. which also covers the building blocks of pristine interplanetary dust particles. The dust collector of MIDAS will point at the comet and collect particles drifting Outwards from the nucleus Surface. MIDAS is based on an Atomic Force Microscope (AFM). a type of scanning microprobe able to image small Structures in 3D. AFM images provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning of the flight instrument, and the implications for cometary measurements.
引用
收藏
页码:869 / 904
页数:36
相关论文
共 50 条
  • [21] Cometary dust collected by MIDAS on board Rosetta I. Dust particle catalog and statistics
    Kim, M.
    Mannel, T.
    Boakes, P. D.
    Bentley, M. S.
    Longobardo, A.
    Jeszenszky, H.
    Moissl, R.
    MIDAS Team
    ASTRONOMY & ASTROPHYSICS, 2023, 673
  • [22] Development of automated microplastic identification workflow for Raman micro-imaging and evaluation of the uncertainties during micro-imaging
    Yang, Zijiang
    Nagashima, Hiroya
    Arakawa, Hisayuki
    MARINE POLLUTION BULLETIN, 2023, 193
  • [23] Evaluation and fabrication of AFM array for ESA-Midas /Rosetta space mission
    Barth, W
    Debski, T
    Abedinov, N
    Ivanov, T
    Heerlein, H
    Volland, B
    Gotszalk, T
    Rangelow, IW
    Torkar, K
    Fritzenwallner, K
    Grabiec, P
    Studzinska, K
    Kostic, I
    Hudek, P
    MICROELECTRONIC ENGINEERING, 2001, 57-8 : 825 - 831
  • [24] A Sperm Quality Detection System Based on Microfluidic Chip and Micro-Imaging System
    Pan, Xiaoqing
    Gao, Kang
    Yang, Ning
    Wang, Yafei
    Zhang, Xiaodong
    Shao, Le
    Zhai, Pin
    Qin, Feng
    Zhang, Xia
    Li, Jian
    Wang, Xinglong
    Yang, Jie
    FRONTIERS IN VETERINARY SCIENCE, 2022, 9
  • [25] Automatic Micropipette Tip Detection and Focusing in Industrial Micro-Imaging System
    Cheng, Xiaohui
    Xu, Jiahong
    Zhao, Xin
    Sun, Mingzhu
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 185 - 195
  • [26] Development of micro-imaging technologies for biomedicine
    Ishii, Keizo
    Yamazaki, Hiromichi
    Matsuyama, Shigeo
    Kikuchi, Youhei
    Inomata, Masakazu
    FUTURE MEDICAL ENGINEERING BASED ON BIONANOTECHNOLOGY, PROCEEDINGS, 2006, : 649 - +
  • [27] Combined analytical studies of interplanetary dust particles for the MIDAS experiment on Rosetta.
    Weber, I
    Stephan, T
    Zaudtke, O
    Jessberger, EK
    METEORITICS & PLANETARY SCIENCE, 2002, 37 (07) : A148 - A148
  • [28] MERCURY CHALCOGENIDE MICRO-IMAGING PROCESS
    MARSH, DG
    CHU, JYC
    PHOTOGRAPHIC SCIENCE AND ENGINEERING, 1976, 20 (01): : 24 - 28
  • [29] Acoustic micro-imaging of multichip modules
    Adams, Thomas E.
    Adams, Thomas E.
    Surface mount technology, 1991, 5 (06): : 36 - 38
  • [30] Micro-imaging system using scanning DC-SQUID microscope
    Morooka, T
    Nakayama, S
    Odawara, A
    Ikeda, M
    Tanaka, S
    Chinone, K
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999, 9 (02) : 3491 - 3494