Nonsmooth and discontinuous speed-gradient algorithms

被引:13
|
作者
Dolgopolik, M. V. [1 ]
Fradkov, A. L.
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Emb, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
Speed-gradient; Nonsmooth systems; Finite-time convergence; Pendulum; PASSIFICATION; STABILITY; SYSTEMS;
D O I
10.1016/j.nahs.2017.03.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, nonsmooth extensions of the Speed-Gradient (SG) algorithms in differential and finite forms are proposed. The conditions ensuring achievement of the control goal (convergence of the goal function to zero) are established. Furthermore, conditions under which the control goal is achieved in finite time with the use of nonsmooth or discontinuous SG algorithms are obtained. Theoretical results are illustrated by example of nonsmooth energy-based control for a non-affine in control pendulum-like system. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 50 条
  • [31] Local feedback passivation of nonlinear discrete-time systems through the speed-gradient algorithm
    Navarro-Lopez, Eva M.
    AUTOMATICA, 2007, 43 (07) : 1302 - 1306
  • [32] Modeling and speed-gradient control of passage through resonance for the two-rotor vibration unit
    Tomchin, Dmitry
    Fradkov, Alexander
    20TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2006: MODELLING METHODOLOGIES AND SIMULATION: KEY TECHNOLOGIES IN ACADEMIA AND INDUSTRY, 2006, : 501 - +
  • [33] Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
    Chen, Lesi
    Xu, Jing
    Luo, Luo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [34] An Equivalent Reformulation and Multiproximity Gradient Algorithms for a Class of Nonsmooth Fractional Programming
    Zhou, Junpeng
    Zhang, Na
    Li, Qia
    MATHEMATICS OF OPERATIONS RESEARCH, 2024,
  • [35] Lyapunov-Bregman functions for speed-gradient adaptive control of nonlinear time-varying systems
    Fradkov, Alexander
    IFAC PAPERSONLINE, 2022, 55 (12): : 544 - 548
  • [36] Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems
    Xin Yang
    Lingling Xu
    Journal of Global Optimization, 2023, 87 : 939 - 964
  • [37] Some accelerated alternating proximal gradient algorithms for a class of nonconvex nonsmooth problems
    Yang, Xin
    Xu, Lingling
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 939 - 964
  • [38] On robustness of the speed-gradient sampled-data energy control for the sine-Gordon equation: The simpler the better
    Andrievsky, Boris
    Orlov, Yury
    Fradkov, Alexander L.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [39] Speed and convergence properties of gradient algorithms for optimization of IMRT
    Zhang, XD
    Liu, H
    Wang, XC
    Dong, L
    Wu, QW
    Mohan, R
    MEDICAL PHYSICS, 2004, 31 (05) : 1141 - 1152
  • [40] APPROXIMATION GRADIENT IN A NONSMOOTH VARIATIONAL
    KORNILOV, VY
    MAIBORODA, LA
    CYBERNETICS, 1987, 23 (02): : 231 - 232