Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization

被引:0
|
作者
Chen, Lesi [1 ]
Xu, Jing [2 ]
Luo, Luo [1 ]
机构
[1] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
[2] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
VARIABLE SELECTION; ZEROTH-ORDER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the optimization problem of the form min(x is an element of Rd) f(x) =(Delta) E-xi[F(x; xi)], where the component F(x; xi) is L-mean-squared Lipschitz but possibly nonconvex and nonsmooth. The recently proposed gradient-free method requires at most O(L(4)d(3/2)epsilon(-4) + Delta L(3)d(3/2)delta(-1)epsilon(-4)) stochastic zeroth-order oracle complexity to find a (delta, epsilon)-Goldstein stationary point of objective function, where Delta = f(x(0)) - inf(x is an element of Rd) f(x) and x(0) is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to O(L(3)d(3/2)epsilon(-3) + Delta L(2)d(3/2)delta(-1)epsilon(-3)).
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
    Huang, Feihu
    Gu, Bin
    Huo, Zhouyuan
    Chen, Songcan
    Huang, Heng
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1503 - 1510
  • [2] Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
    Lin, Tianyi
    Zheng, Zeyu
    Jordan, Michael I.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [3] Gradient-Free Multi-Agent Nonconvex Nonsmooth Optimization
    Hajinezhad, Davood
    Zavlanos, Michael M.
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4939 - 4944
  • [4] Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization
    Ömer Deniz Akyildiz
    Dan Crisan
    Joaquín Míguez
    [J]. Statistics and Computing, 2020, 30 : 1645 - 1663
  • [5] Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization
    Akyildiz, Omer Deniz
    Crisan, Dan
    Miguez, Joaquin
    [J]. STATISTICS AND COMPUTING, 2020, 30 (06) : 1645 - 1663
  • [6] Gradient-free method for nonsmooth distributed optimization
    Li, Jueyou
    Wu, Changzhi
    Wu, Zhiyou
    Long, Qiang
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (02) : 325 - 340
  • [7] Gradient-free method for nonsmooth distributed optimization
    Jueyou Li
    Changzhi Wu
    Zhiyou Wu
    Qiang Long
    [J]. Journal of Global Optimization, 2015, 61 : 325 - 340
  • [8] Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization
    Yu. M. Ermol'ev
    V. I. Norkin
    [J]. Cybernetics and Systems Analysis, 1998, 34 : 196 - 215
  • [9] Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization
    Ermol'ev, YM
    Norkin, VI
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 1998, 34 (02) : 196 - 215
  • [10] INCREMENTAL GRADIENT-FREE METHOD FOR NONSMOOTH DISTRIBUTED OPTIMIZATION
    Li, Jueyou
    Li, Guoquan
    Wu, Zhiyou
    Wu, Changzhi
    Wang, Xiangyu
    Lee, Jae-Myung
    Jung, Kwang-Hyo
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2017, 13 (04) : 1841 - 1857