Nonsmooth and discontinuous speed-gradient algorithms

被引:13
|
作者
Dolgopolik, M. V. [1 ]
Fradkov, A. L.
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Emb, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
Speed-gradient; Nonsmooth systems; Finite-time convergence; Pendulum; PASSIFICATION; STABILITY; SYSTEMS;
D O I
10.1016/j.nahs.2017.03.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, nonsmooth extensions of the Speed-Gradient (SG) algorithms in differential and finite forms are proposed. The conditions ensuring achievement of the control goal (convergence of the goal function to zero) are established. Furthermore, conditions under which the control goal is achieved in finite time with the use of nonsmooth or discontinuous SG algorithms are obtained. Theoretical results are illustrated by example of nonsmooth energy-based control for a non-affine in control pendulum-like system. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 50 条
  • [1] Nonsmooth Speed-Gradient Algorithms
    Dolgopolik, Maksim V.
    Fradkov, Alexander L.
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 998 - 1002
  • [2] FINITE-DIFFERENTIAL NONSMOOTH SPEED-GRADIENT CONTROL: STABILITY, PASSIVITY, ROBUSTNESS
    Dolgopolik, M., V
    Fradkov, A. L.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (02) : 1370 - 1392
  • [3] SPEED-GRADIENT ALGORITHMS IN PROBLEMS OF THE ADAPTIVE-CONTROL OF MECHANICAL SYSTEMS
    STOTSKIY, AA
    FRADKOV, AL
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (04) : 67 - 75
  • [4] GENERIC and Speed-Gradient Principle
    Shalymov, Dmitry S.
    Fradkov, Alexander L.
    IFAC PAPERSONLINE, 2018, 51 (33): : 121 - 126
  • [5] SPEED-GRADIENT CONTROL OF THE BROCKETT INTEGRATOR
    Dolgopolik, M. V.
    Fradkov, A. L.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 2116 - 2131
  • [6] Speed-Gradient Entropy Maximization in Networks
    Fradkov, Alexander L.
    Shalymov, Dmitry S.
    Proskurnikov, Anton V.
    2016 IEEE CONFERENCE ON NORBERT WIENER IN THE 21ST CENTURY (21CW), 2016, : 62 - 66
  • [7] Resonance curve and speed-gradient design of control algorithms for dissociation of diatomic molecule ensembles
    Ananjevsky, M
    Efimov, A
    Fradkov, A
    Krivtsov, A
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 867 - 878
  • [8] Speed-gradient Entropy Principle for Nonstationary Processes
    Fradkov, Alexander
    ENTROPY, 2008, 10 (04): : 757 - 764
  • [9] Simulation of MEPP via Speed-Gradient Principle
    Shalymov, Dmitry S.
    Fradkov, Alexander L.
    PROCEEDINGS OF ELMAR-2015 57TH INTERNATIONAL SYMPOSIUM ELMAR-2015, 2015, : 113 - 116
  • [10] Speed-gradient control of towed probe satellite oscillations
    Guzenko, PY
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 363 - 367