GENERIC and Speed-Gradient Principle

被引:1
|
作者
Shalymov, Dmitry S. [1 ]
Fradkov, Alexander L. [2 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, 61 Bolshoy Ave VO, St Petersburg 199178, Russia
[2] ITMO Univ, 49 Kronverkskiy Pr, St Petersburg 197101, Russia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 33期
基金
俄罗斯科学基金会;
关键词
GENERIC; Speed-Gradient principle; Fokker-Planck equation; DYNAMICS; THERMODYNAMICS; FORMULATION; FORMALISM; EQUATION; MAXIMUM; FLUIDS;
D O I
10.1016/j.ifacol.2018.12.104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we investigate the relationship between GENERIC (general equation for the nonequilibrium reversible-irreversible coupling) framework originated in nonequilibrium thermodynamics and the Speed-Gradient (SG) Principle originated in control theory. GENERIC is known as a general structure for the various time-evolution equations for nonequilibrium systems. The SG-principle is successfully used to determine dynamics of entropy-driven systems from the perspective of MaxEnt principle. Based on the SG-principle a time-evolution equations can be derived in a general way. We consider several examples of SG-principle application and show its correspondence to GENERIC framework. The relation between GENERIC and Fokker-Planck equations has already been established by H.C. Ottinger et al. The result of this paper can also be treated to demonstrate the way how Fokker-Planck equations and the SG-principle relate. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [1] Speed-gradient Entropy Principle for Nonstationary Processes
    Fradkov, Alexander
    ENTROPY, 2008, 10 (04): : 757 - 764
  • [2] Simulation of MEPP via Speed-Gradient Principle
    Shalymov, Dmitry S.
    Fradkov, Alexander L.
    PROCEEDINGS OF ELMAR-2015 57TH INTERNATIONAL SYMPOSIUM ELMAR-2015, 2015, : 113 - 116
  • [3] Speed-gradient principle for description of transient dynamics in systems obeying maximum entropy principle
    Fradkov, Alexander
    Krivtsov, Anton
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2010, 1305 : 399 - 406
  • [4] Dynamics of the f-Divergence Minimization Processes Based on the Speed-Gradient Principle
    Shalymov, Dmitry S.
    Fradkov, Alexander L.
    2016 IEEE CONFERENCE ON NORBERT WIENER IN THE 21ST CENTURY (21CW), 2016, : 7 - 11
  • [5] Nonsmooth Speed-Gradient Algorithms
    Dolgopolik, Maksim V.
    Fradkov, Alexander L.
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 998 - 1002
  • [6] Modelling non-equilibrium thermodynamic systems from the speed-gradient principle
    Khantuleva, Tatiana A.
    Shalymov, Dmitry S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2088):
  • [7] SPEED-GRADIENT CONTROL OF THE BROCKETT INTEGRATOR
    Dolgopolik, M. V.
    Fradkov, A. L.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 2116 - 2131
  • [8] Speed-Gradient Entropy Maximization in Networks
    Fradkov, Alexander L.
    Shalymov, Dmitry S.
    Proskurnikov, Anton V.
    2016 IEEE CONFERENCE ON NORBERT WIENER IN THE 21ST CENTURY (21CW), 2016, : 62 - 66
  • [9] Nonsmooth and discontinuous speed-gradient algorithms
    Dolgopolik, M. V.
    Fradkov, A. L.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2017, 25 : 99 - 113
  • [10] Speed-gradient control of towed probe satellite oscillations
    Guzenko, PY
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 363 - 367