Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion

被引:8
|
作者
Boscain, Ugo V. [1 ,2 ]
Chertovskih, Roman [3 ,4 ]
Gauthier, Jean-Paul [5 ]
Prandi, Dario [6 ]
Remizov, Alexey O. [7 ]
机构
[1] UPMC Univ Paris 06, CNRS, Lab Jacques Louis Lions, F-75005 Paris, France
[2] INRIA, INRIA Team CAGE, Paris, France
[3] Univ Porto, Res Ctr Syst & Technol, Fac Engn, Rua Dr Roberto Frias S-N, P-4200465 Porto, Portugal
[4] Samara Natl Res Univ, 34 Moskovskoye Ave, Samara 443086, Russia
[5] Univ Toulon USTV, LSIS, UMR CNRS 7296, F-83957 La Garde, France
[6] Cent Supelec, CNRS, L2S, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[7] CMAP Ecole Polytech, CNRS, F-91128 Palaiseau, France
基金
欧洲研究理事会;
关键词
Image reconstruction; Inpainting; Sub-Riemannian hypoelliptic diffusion; INVARIANT PARABOLIC EVOLUTIONS; INVERTIBLE ORIENTATION SCORES; CONTOUR ENHANCEMENT; RECONSTRUCTION; FRAMEWORK; EQUATIONS; FIELDS; SE(2);
D O I
10.1007/s10851-018-0810-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new biomimetic image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in Boscain et al. (SIAM J. Imaging Sci. 7(2):669-695, 2014) and based upon a semi-discrete variation of the Citti-Petitot-Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad hoc local averaging techniques. In particular, we focus on highly corrupted images (i.e., where more than the 80% of the image is missing), for which we obtain high-quality reconstructions.
引用
收藏
页码:1231 / 1245
页数:15
相关论文
共 50 条
  • [31] MULTIGRID METHOD FOR A MODIFIED CURVATURE DRIVEN DIFFUSION MODEL FOR IMAGE INPAINTING
    Brito-Loeza, Carlos
    Chen, Ke
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (06) : 856 - 875
  • [33] Adaptive Sequentially Weighted Median Filter for Image Highly Corrupted by Impulse Noise
    Chen, Jiayi
    Zhan, Yinwei
    Cao, Huiying
    IEEE ACCESS, 2019, 7 : 158545 - 158556
  • [34] Enhancement of damaged-image prediction through Cahn-Hilliard image inpainting
    Carrillo, Jose A.
    Kalliadasis, Serafim
    Liang, Fuyue
    Perez, Sergio P.
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (05):
  • [35] The tangent space to a hypoelliptic diffusion and applications
    Baudoin, F
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 338 - 362
  • [36] A New Oriented-Diffusion Image Inpainting Framework for Striped Texture Images
    Zhu Yong
    Wang Gui
    Han Zhike
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 3, PROCEEDINGS, 2009, : 79 - 84
  • [37] MMGInpainting: Multi-Modality Guided Image Inpainting Based on Diffusion Models
    Zhang, Cong
    Yang, Wenxia
    Li, Xin
    Han, Huan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8811 - 8823
  • [38] Image Inpainting: A Review
    Omar Elharrouss
    Noor Almaadeed
    Somaya Al-Maadeed
    Younes Akbari
    Neural Processing Letters, 2020, 51 : 2007 - 2028
  • [39] Variational image inpainting
    Chan, TF
    Shen, JH
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (05) : 579 - 619
  • [40] Image Compression with Inpainting\
    Yatnalli, Veeramma
    Sudha, K. L.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2012, : 158 - 163