Highly Corrupted Image Inpainting Through Hypoelliptic Diffusion

被引:8
|
作者
Boscain, Ugo V. [1 ,2 ]
Chertovskih, Roman [3 ,4 ]
Gauthier, Jean-Paul [5 ]
Prandi, Dario [6 ]
Remizov, Alexey O. [7 ]
机构
[1] UPMC Univ Paris 06, CNRS, Lab Jacques Louis Lions, F-75005 Paris, France
[2] INRIA, INRIA Team CAGE, Paris, France
[3] Univ Porto, Res Ctr Syst & Technol, Fac Engn, Rua Dr Roberto Frias S-N, P-4200465 Porto, Portugal
[4] Samara Natl Res Univ, 34 Moskovskoye Ave, Samara 443086, Russia
[5] Univ Toulon USTV, LSIS, UMR CNRS 7296, F-83957 La Garde, France
[6] Cent Supelec, CNRS, L2S, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[7] CMAP Ecole Polytech, CNRS, F-91128 Palaiseau, France
基金
欧洲研究理事会;
关键词
Image reconstruction; Inpainting; Sub-Riemannian hypoelliptic diffusion; INVARIANT PARABOLIC EVOLUTIONS; INVERTIBLE ORIENTATION SCORES; CONTOUR ENHANCEMENT; RECONSTRUCTION; FRAMEWORK; EQUATIONS; FIELDS; SE(2);
D O I
10.1007/s10851-018-0810-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new biomimetic image inpainting algorithm, the Averaging and Hypoelliptic Evolution (AHE) algorithm, inspired by the one presented in Boscain et al. (SIAM J. Imaging Sci. 7(2):669-695, 2014) and based upon a semi-discrete variation of the Citti-Petitot-Sarti model of the primary visual cortex V1. The AHE algorithm is based on a suitable combination of sub-Riemannian hypoelliptic diffusion and ad hoc local averaging techniques. In particular, we focus on highly corrupted images (i.e., where more than the 80% of the image is missing), for which we obtain high-quality reconstructions.
引用
收藏
页码:1231 / 1245
页数:15
相关论文
共 50 条
  • [21] THE DIFFERENTIATION OF HYPOELLIPTIC DIFFUSION SEMIGROUPS
    Arnaudon, Marc
    Thalmaier, Anton
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (04) : 1285 - 1311
  • [22] Image inpainting
    Takahashi, Tomohiro
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2017, 71 (07): : 503 - 504
  • [23] Image Inpainting
    Guillemot, Christine
    Le Meur, Olivier
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 127 - 144
  • [24] Image inpainting
    Bertalmio, M
    Sapiro, G
    Caselles, V
    Ballester, C
    SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, : 417 - 424
  • [25] Quality processing of microarray image data through image inpainting and texture synthesis
    O'Neill, P
    Magoulas, GD
    Liu, XH
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 117 - 120
  • [26] ORTHOGONAL-DIRECTIONAL FORWARD DIFFUSION IMAGE INPAINTING AND DENOISING MODEL
    Wu Jiying Ruan Qiuqi An Gaoyun(Institute of Information Science
    JournalofElectronics(China), 2008, (05) : 622 - 628
  • [27] Feature pyramid network for diffusion-based image inpainting detection
    Zhang, Yulan
    Ding, Feng
    Kwong, Sam
    Zhu, Guopu
    INFORMATION SCIENCES, 2021, 572 : 29 - 42
  • [28] RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and Generation
    Anciukevicius, Titas
    Xu, Zexiang
    Fisher, Matthew
    Henderson, Paul
    Bilen, Hakan
    Mitra, Niloy J.
    Guerrero, Paul
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 12608 - 12618
  • [29] Structure Matters: Tackling the Semantic Discrepancy in Diffusion Models for Image Inpainting
    Liu, Haipeng
    Wang, Yang
    Qian, Biao
    Wang, Meng
    Rui, Yong
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 8038 - 8047
  • [30] Sketch-guided Image Inpainting with Partial Discrete Diffusion Process
    Sharma, Nakul
    Tripathi, Aditay
    Chakraborty, Anirban
    Mishra, Anand
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2024, : 6024 - 6034