Adaptive Interaction Fusion Networks for Fake News Detection

被引:13
|
作者
Wu, Lianwei [1 ]
Rao, Yuan [2 ]
机构
[1] Xi An Jiao Tong Univ, Software Sch, Lab Social Intelligence & Complex Data Proc, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Shannxi Joint Key Lab, Xian, Peoples R China
关键词
D O I
10.3233/FAIA200348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The majority of existing methods for fake news detection universally focus on learning and fusing various features for detection. However, the learning of various features is independent, which leads to a lack of cross-interaction fusion between features on social media, especially between posts and comments. Generally, in fake news, there are emotional associations and semantic conflicts between posts and comments. How to represent and fuse the cross-interaction between both is a key challenge. In this paper, we propose Adaptive Interaction Fusion Networks (AIFN) to fulfill cross-interaction fusion among features for fake news detection. In AIFN, to discover semantic conflicts, we design gated adaptive interaction networks (GAIN) to capture adaptively similar semantics and conflicting semantics between posts and comments. To establish feature associations, we devise semantic-level fusion self-attention networks (SFSN) to enhance semantic correlations and fusion among features. Extensive experiments on two real-world datasets, i.e., RumourEval and PHEME, demonstrate that AIFN achieves the state-of-the-art performance and boosts accuracy by more than 2.05% and 1.90%, respectively.
引用
收藏
页码:2220 / 2227
页数:8
相关论文
共 50 条
  • [31] Adaptive Goal Function of Ant Colony Optimization in Fake News Detection
    Probierz, Barbara
    Kozak, Jan
    Stefanski, Piotr
    Juszczuk, Przemyslaw
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 387 - 400
  • [32] Multimodal Fake News Detection
    Segura-Bedmar, Isabel
    Alonso-Bartolome, Santiago
    INFORMATION, 2022, 13 (06)
  • [33] Improving Data Fusion for Fake News Detection: A Hybrid Fusion Approach for Unimodal and Multimodal Data
    Hamed, Suhaib Kh.
    Ab Aziz, Mohd Juzaiddin
    Yaakub, Mohd Ridzwan
    IEEE ACCESS, 2024, 12 : 112412 - 112425
  • [34] Albanian Fake News Detection
    Canhasi, Ercan
    Shijaku, Rexhep
    Berisha, Erblin
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2022, 21 (05)
  • [35] A Tool for Fake News Detection
    Al Asaad, Bashar
    Erascu, Madalina
    2018 20TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2018), 2019, : 379 - 386
  • [36] Fake news detection on Twitter
    Sharma, Srishti
    Saraswat, Mala
    Dubey, Anil Kumar
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2022, 18 (5/6) : 388 - 412
  • [37] A mutual attention based multimodal fusion for fake news detection on social network
    Guo, Ying
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15311 - 15320
  • [38] Escaping the neutralization effect of modality features fusion in multimodal Fake News Detection
    Wang, Bing
    Li, Ximing
    Li, Changchun
    Wang, Shengsheng
    Gao, Wanfu
    INFORMATION FUSION, 2024, 111
  • [39] Multi-modal deep fusion based fake news detection method
    Jing Q.
    Fan X.
    Wang B.
    Bi J.
    Tan H.
    High Technology Letters, 2022, 32 (04) : 392 - 403
  • [40] Multi-depth Graph Convolutional Networks for Fake News Detection
    Hu, Guoyong
    Ding, Ye
    Qi, Shuhan
    Wang, Xuan
    Liao, Qing
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING (NLPCC 2019), PT I, 2019, 11838 : 698 - 710